Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning
- URL: http://arxiv.org/abs/2409.18265v2
- Date: Sat, 26 Oct 2024 09:43:44 GMT
- Title: Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning
- Authors: Grzegorz Rypeść, Sebastian Cygert, Tomasz Trzciński, Bartłomiej Twardowski,
- Abstract summary: We tackle the problem of training a model on a sequence of tasks without access to past data.
Existing methods represent classes as Gaussian distributions in the feature extractor's latent space.
We propose AdaGauss -- a novel method that adapts covariance matrices from task to task.
- Score: 0.3281128493853064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exemplar-Free Class Incremental Learning (EFCIL) tackles the problem of training a model on a sequence of tasks without access to past data. Existing state-of-the-art methods represent classes as Gaussian distributions in the feature extractor's latent space, enabling Bayes classification or training the classifier by replaying pseudo features. However, we identify two critical issues that compromise their efficacy when the feature extractor is updated on incremental tasks. First, they do not consider that classes' covariance matrices change and must be adapted after each task. Second, they are susceptible to a task-recency bias caused by dimensionality collapse occurring during training. In this work, we propose AdaGauss -- a novel method that adapts covariance matrices from task to task and mitigates the task-recency bias owing to the additional anti-collapse loss function. AdaGauss yields state-of-the-art results on popular EFCIL benchmarks and datasets when training from scratch or starting from a pre-trained backbone. The code is available at: https://github.com/grypesc/AdaGauss.
Related papers
- RankUp: Boosting Semi-Supervised Regression with an Auxiliary Ranking Classifier [21.37308028303897]
State-of-the-art (SOTA) semi-supervised learning techniques, such as FixMatch and it's variants, have demonstrated impressive performance in classification tasks.
We present RankUp, a simple yet effective approach that adapts existing semi-supervised classification techniques to enhance the performance of regression tasks.
arXiv Detail & Related papers (2024-10-29T15:25:21Z) - CorDA: Context-Oriented Decomposition Adaptation of Large Language Models for Task-Aware Parameter-Efficient Fine-tuning [101.81127587760831]
Current fine-tuning methods build adapters widely of the context of downstream task to learn, or the context of important knowledge to maintain.
We propose CorDA, a Context-oriented Decomposition Adaptation method that builds learnable task-aware adapters.
Our method enables two options, the knowledge-preserved adaptation and the instruction-previewed adaptation.
arXiv Detail & Related papers (2024-06-07T19:10:35Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - SplAgger: Split Aggregation for Meta-Reinforcement Learning [32.25672143072966]
Black box methods do so by training off-the-shelf sequence models end-to-end.
task inference methods explicitly infer a posterior distribution over the unknown task.
Recent work has shown that task inference sequence models are not necessary for strong performance.
We present evidence that task inference sequence models are indeed still beneficial.
arXiv Detail & Related papers (2024-03-05T14:57:04Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - FeCAM: Exploiting the Heterogeneity of Class Distributions in
Exemplar-Free Continual Learning [21.088762527081883]
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks.
Recent approaches to incrementally learning the classifier by freezing the feature extractor after the first task have gained much attention.
We explore prototypical networks for CIL, which generate new class prototypes using the frozen feature extractor and classify the features based on the Euclidean distance to the prototypes.
arXiv Detail & Related papers (2023-09-25T11:54:33Z) - Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
arXiv Detail & Related papers (2023-03-12T02:49:19Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data.
CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models.
arXiv Detail & Related papers (2022-03-25T11:42:02Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
Long-tailed instance segmentation is a challenging task due to the extreme imbalance of training samples among classes.
It causes severe biases of the head classes (with majority samples) against the tailed ones.
We propose a novel Pairwise Class Balance (PCB) method, built upon a confusion matrix which is updated during training to accumulate the ongoing prediction preferences.
arXiv Detail & Related papers (2022-01-08T07:48:36Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
We propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training.
Our proposed regularization function shows an accuracy boost of $sim$ $36%$ on the Omniglot dataset.
arXiv Detail & Related papers (2021-01-24T22:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.