論文の概要: Towards Efficient and Multifaceted Computer-assisted Pronunciation Training Leveraging Hierarchical Selective State Space Model and Decoupled Cross-entropy Loss
- arxiv url: http://arxiv.org/abs/2502.07575v1
- Date: Tue, 11 Feb 2025 14:17:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:15.096565
- Title: Towards Efficient and Multifaceted Computer-assisted Pronunciation Training Leveraging Hierarchical Selective State Space Model and Decoupled Cross-entropy Loss
- Title(参考訳): 階層的選択状態空間モデルと非結合型クロスエントロピー損失を利用した効率的・多面的コンピュータ支援発音訓練に向けて
- Authors: Fu-An Chao, Berlin Chen,
- Abstract要約: HMambaは、APAとMDDタスクをシームレスに並列に統合する新しいCAPTアプローチである。
speechocean762ベンチマークデータセットの総合的な実験結果の集合は、我々のAPAに対するアプローチの有効性を示す。
提案手法は,F1スコア63.85%を達成し,強力なベースラインよりもMDD性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 5.101375571703936
- License:
- Abstract: Prior efforts in building computer-assisted pronunciation training (CAPT) systems often treat automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD) as separate fronts: the former aims to provide multiple pronunciation aspect scores across diverse linguistic levels, while the latter focuses instead on pinpointing the precise phonetic pronunciation errors made by non-native language learners. However, it is generally expected that a full-fledged CAPT system should perform both functionalities simultaneously and efficiently. In response to this surging demand, we in this work first propose HMamba, a novel CAPT approach that seamlessly integrates APA and MDD tasks in parallel. In addition, we introduce a novel loss function, decoupled cross-entropy loss (deXent), specifically tailored for MDD to facilitate better-supervised learning for detecting mispronounced phones, thereby enhancing overall performance. A comprehensive set of empirical results on the speechocean762 benchmark dataset demonstrates the effectiveness of our approach on APA. Notably, our proposed approach also yields a considerable improvement in MDD performance over a strong baseline, achieving an F1-score of 63.85%. Our codes are made available at https://github.com/Fuann/hmamba
- Abstract(参考訳): コンピュータ支援発音訓練(CAPT)システムの構築に先立つ取り組みは、しばしば自動発音評価(APA)と誤発音検出・診断(MDD)を別の前線として扱う。
しかし,完全なCAPTシステムは同時に効率的に機能することが期待されている。
このような需要の高まりに対応して、我々はまず、APAとMDDタスクをシームレスに並列に統合する新しいCAPTアプローチであるHMambaを提案する。
さらに,MDDに特化して,不明瞭な電話を検出するための教師あり学習を容易にするために,新たな損失関数であるデカップリングクロスエントロピー損失(deXent)を導入し,全体的な性能を向上させる。
speechocean762ベンチマークデータセットの総合的な実験結果の集合は、我々のAPAに対するアプローチの有効性を示す。
特に,提案手法は,F1スコア63.85%を達成し,強力なベースラインよりもMDD性能を著しく向上させる。
私たちのコードはhttps://github.com/Fuann/hmambaで利用可能です。
関連論文リスト
- Phonological Level wav2vec2-based Mispronunciation Detection and
Diagnosis Method [11.069975459609829]
音声特徴量検出に基づく低レベルの誤認識検出と診断(MDD)手法を提案する。
提案手法は,母国語からの英語学習者から収集したL2音声コーパスに適用した。
論文 参考訳(メタデータ) (2023-11-13T02:41:41Z) - Text-Aware End-to-end Mispronunciation Detection and Diagnosis [17.286013739453796]
誤認識検出・診断(MDD)技術はコンピュータ支援発音訓練システム(CAPT)の鍵となる要素である
本稿では,関係のないテキスト情報を抑えつつ,関連する音声特徴をより重要視するゲーティング戦略を提案する。
論文 参考訳(メタデータ) (2022-06-15T04:08:10Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - End-to-End Active Speaker Detection [58.7097258722291]
本稿では,特徴学習と文脈予測を共同で学習するエンド・ツー・エンドのトレーニングネットワークを提案する。
また、時間間グラフニューラルネットワーク(iGNN)ブロックを導入し、ASD問題における主要なコンテキストのソースに応じてメッセージパッシングを分割する。
実験により、iGNNブロックからの集約された特徴はASDにより適しており、その結果、最先端のアートパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2022-03-27T08:55:28Z) - Sequence-level self-learning with multiple hypotheses [53.04725240411895]
我々は、自動音声認識(ASR)のためのアテンションベースシーケンス・ツー・シーケンス(seq2seq)モデルを用いた新しい自己学習手法を開発した。
従来の教師なし学習手法とは対照的に,我々はEmphmulti-task Learning(MTL)フレームワークを採用する。
実験の結果,本手法は,英語データのみを用いてトレーニングしたベースラインモデルと比較して,英文音声データのWERを14.55%から10.36%に削減できることがわかった。
論文 参考訳(メタデータ) (2021-12-10T20:47:58Z) - A transfer learning based approach for pronunciation scoring [7.98890440106366]
携帯電話レベルの発音は、人間のアノテータよりもはるかにパフォーマンスが低い、難しい作業である。
標準システムは、ネイティブデータのみを持つ自動音声認識(ASR)のために訓練されたモデルを使用して、フレーズで各電話機にスコアを生成する。
本稿では、ASRで訓練されたモデルを活用し、発音評価のタスクに適応するトランスファー学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-11-01T14:37:06Z) - Dynamic Acoustic Unit Augmentation With BPE-Dropout for Low-Resource
End-to-End Speech Recognition [62.94773371761236]
我々は、OOVレートの高い低リソースセットアップで効果的なエンドツーエンドASRシステムを構築することを検討します。
本稿では,BPE-dropout法に基づく動的音響ユニット拡張法を提案する。
我々の単言語トルココンフォーマーは22.2%の文字誤り率(CER)と38.9%の単語誤り率(WER)の競争結果を確立した。
論文 参考訳(メタデータ) (2021-03-12T10:10:13Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
本稿では,F測度に対する微分可能な近似法を提案し,標準バックプロパゲーションを用いてネットワークをトレーニングする。
我々は、アダルト、コミュニティ、犯罪の2つの標準フェアネスデータセットの実験を行い、ATISデータセットの音声・インテリジェンス検出と音声・COCOデータセットの音声・イメージ概念分類を行った。
これらの4つのタスクのすべてにおいて、F測定は、クロスエントロピー損失関数で訓練されたモデルと比較して、最大8%の絶対的な絶対的な改善を含む、マイクロF1スコアの改善をもたらす。
論文 参考訳(メタデータ) (2020-08-08T03:02:27Z) - An End-to-End Mispronunciation Detection System for L2 English Speech
Leveraging Novel Anti-Phone Modeling [11.894724235336872]
誤認識検出診断(MDD)はコンピュータ支援発音訓練(CAPT)のコアコンポーネントである
本稿では,新しいエンドツーエンド自動音声認識(E2E-based ASR)アプローチでMDDを実行することを提案する。
特に,元のL2電話機を対応するアンチフォンセットで拡張し,誤発音検出と診断フィードバックの改善を目的としている。
論文 参考訳(メタデータ) (2020-05-25T07:27:47Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。