Generative Modeling with Diffusion
- URL: http://arxiv.org/abs/2412.10948v1
- Date: Sat, 14 Dec 2024 20:04:46 GMT
- Title: Generative Modeling with Diffusion
- Authors: Justin Le,
- Abstract summary: We introduce the diffusion model as a method to generate new samples.
We will define the noising and denoising processes, then introduce algorithms to train and generate with a diffusion model.
- Score: 0.0
- License:
- Abstract: We introduce the diffusion model as a method to generate new samples. Generative models have been recently adopted for tasks such as art generation (Stable Diffusion, Dall-E) and text generation (ChatGPT). Diffusion models in particular apply noise to sample data and then "reverse" this noising process to generate new samples. We will formally define the noising and denoising processes, then introduce algorithms to train and generate with a diffusion model. Finally, we will explore a potential application of diffusion models in improving classifier performance on imbalanced data.
Related papers
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.
We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Generative Modeling with Bayesian Sample Inference [50.07758840675341]
We derive a novel generative model from the simple act of Gaussian posterior inference.
Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability.
Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief.
arXiv Detail & Related papers (2025-02-11T14:27:10Z) - Generative diffusion model with inverse renormalization group flows [0.0]
Diffusion models produce data by denoising a sample corrupted by white noise.
We introduce a renormalization group-based diffusion model that leverages multiscale nature of data distributions.
We validate the versatility of the model through applications to protein structure prediction and image generation.
arXiv Detail & Related papers (2025-01-15T19:00:01Z) - Accelerated Diffusion Models via Speculative Sampling [89.43940130493233]
Speculative sampling is a popular technique for accelerating inference in Large Language Models.
We extend speculative sampling to diffusion models, which generate samples via continuous, vector-valued Markov chains.
We propose various drafting strategies, including a simple and effective approach that does not require training a draft model.
arXiv Detail & Related papers (2025-01-09T16:50:16Z) - Non-Normal Diffusion Models [3.5534933448684134]
Diffusion models generate samples by incrementally reversing a process that turns data into noise.
We show that when the step size goes to zero, the reversed process is invariant to the distribution of these increments.
We demonstrate the effectiveness of these models on density estimation and generative modeling tasks on standard image datasets.
arXiv Detail & Related papers (2024-12-10T21:31:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models [20.315727650065007]
Denoising diffusion models are a class of generative models which have recently achieved state-of-the-art results across many domains.
We leverage known connections to control akin to the F"ollmer drift to extend established neural network approximation results for the F"ollmer drift to denoising diffusion models and samplers.
arXiv Detail & Related papers (2023-05-16T16:56:19Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
diffusion models have quickly become the prevailing approach to generative modeling in many domains.
We propose an energy-based parameterization of diffusion models which enables the use of new compositional operators.
We find these samplers lead to notable improvements in compositional generation across a wide set of problems.
arXiv Detail & Related papers (2023-02-22T18:48:46Z) - A Reparameterized Discrete Diffusion Model for Text Generation [39.0145272152805]
This work studies discrete diffusion probabilistic models with applications to natural language generation.
We derive an alternative yet equivalent formulation of the sampling from discrete diffusion processes.
We conduct extensive experiments to evaluate the text generation capability of our model, demonstrating significant improvements over existing diffusion models.
arXiv Detail & Related papers (2023-02-11T16:26:57Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.