Generative Modeling with Bayesian Sample Inference
- URL: http://arxiv.org/abs/2502.07580v2
- Date: Sat, 17 May 2025 08:10:26 GMT
- Title: Generative Modeling with Bayesian Sample Inference
- Authors: Marten Lienen, Marcel Kollovieh, Stephan Günnemann,
- Abstract summary: We derive a novel generative model from iterative Gaussian posterior inference.<n>Our model uses a sequence of prediction and posterior update steps to iteratively narrow down the unknown sample.<n>In experiments, we demonstrate that our model improves sample quality on ImageNet32 over both BFNs and the closely related Variational Diffusion Models.
- Score: 50.07758840675341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a novel generative model from iterative Gaussian posterior inference. By treating the generated sample as an unknown variable, we can formulate the sampling process in the language of Bayesian probability. Our model uses a sequence of prediction and posterior update steps to iteratively narrow down the unknown sample starting from a broad initial belief. In addition to a rigorous theoretical analysis, we establish a connection between our model and diffusion models and show that it includes Bayesian Flow Networks (BFNs) as a special case. In our experiments, we demonstrate that our model improves sample quality on ImageNet32 over both BFNs and the closely related Variational Diffusion Models, while achieving equivalent log-likelihoods on ImageNet32 and CIFAR10. Find our code at https://github.com/martenlienen/bsi.
Related papers
- Accelerated Diffusion Models via Speculative Sampling [89.43940130493233]
Speculative sampling is a popular technique for accelerating inference in Large Language Models.<n>We extend speculative sampling to diffusion models, which generate samples via continuous, vector-valued Markov chains.<n>We propose various drafting strategies, including a simple and effective approach that does not require training a draft model.
arXiv Detail & Related papers (2025-01-09T16:50:16Z) - Generative Modeling with Diffusion [0.0]
We introduce the diffusion model as a method to generate new samples.<n>We will define the noising and denoising processes, then introduce algorithms to train and generate with a diffusion model.
arXiv Detail & Related papers (2024-12-14T20:04:46Z) - A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models [14.859580045688487]
A practical bottleneck of diffusion models is their sampling speed.
We propose a novel framework capable of adaptively allocating compute required for the score estimation.
We show that our method could significantly improve the sampling throughput of the diffusion models without compromising image quality.
arXiv Detail & Related papers (2024-08-12T05:33:45Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models [20.315727650065007]
Denoising diffusion models are a class of generative models which have recently achieved state-of-the-art results across many domains.
We leverage known connections to control akin to the F"ollmer drift to extend established neural network approximation results for the F"ollmer drift to denoising diffusion models and samplers.
arXiv Detail & Related papers (2023-05-16T16:56:19Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - OCD: Learning to Overfit with Conditional Diffusion Models [95.1828574518325]
We present a dynamic model in which the weights are conditioned on an input sample x.
We learn to match those weights that would be obtained by finetuning a base model on x and its label y.
arXiv Detail & Related papers (2022-10-02T09:42:47Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - Improving Diffusion Model Efficiency Through Patching [0.0]
We find that adding a simple ViT-style patching transformation can considerably reduce a diffusion model's sampling time and memory usage.
We justify our approach both through an analysis of diffusion model objective, and through empirical experiments on LSUN Church, ImageNet 256, and FFHQ 1024.
arXiv Detail & Related papers (2022-07-09T18:21:32Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Improved Denoising Diffusion Probabilistic Models [4.919647298882951]
We show that DDPMs can achieve competitive log-likelihoods while maintaining high sample quality.
We also find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes.
We show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable.
arXiv Detail & Related papers (2021-02-18T23:44:17Z) - Generating Diverse Translation from Model Distribution with Dropout [13.223158914896727]
We propose to generate diverse translations by deriving a large number of possible models with Bayesian modelling and sampling models from them for inference.
We conducted experiments on Chinese-English and English-German translation tasks and the results show that our method makes a better trade-off between diversity and accuracy.
arXiv Detail & Related papers (2020-10-16T05:50:00Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.