論文の概要: DSV: Exploiting Dynamic Sparsity to Accelerate Large-Scale Video DiT Training
- arxiv url: http://arxiv.org/abs/2502.07590v3
- Date: Sun, 16 Mar 2025 06:01:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 14:56:57.307719
- Title: DSV: Exploiting Dynamic Sparsity to Accelerate Large-Scale Video DiT Training
- Title(参考訳): DSV:大規模ビデオDiTトレーニングを加速するためにダイナミックなスパシリティを爆発させる
- Authors: Xin Tan, Yuetao Chen, Yimin Jiang, Xing Chen, Kun Yan, Nan Duan, Yibo Zhu, Daxin Jiang, Hong Xu,
- Abstract要約: Diffusion Transformer (DiTs) は高品質なビデオの生成において顕著な性能を示した。
DiTは処理時間の95%を消費し、特別なコンテキスト並列性を要求する。
本稿では,経験的に観察したダイナミックアテンション空間を利用して,DSVによるビデオDiTトレーニングを高速化する手法を提案する。
- 参考スコア(独自算出の注目度): 85.04885553561164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Transformers (DiTs) have shown remarkable performance in generating high-quality videos. However, the quadratic complexity of 3D full attention remains a bottleneck in scaling DiT training, especially with high-definition, lengthy videos, where it can consume up to 95% of processing time and demand specialized context parallelism. This paper introduces DSV to accelerate video DiT training by leveraging the dynamic attention sparsity we empirically observe. DSV uses a two-stage algorithm to capture the dynamic sparsity patterns via low-rank based approximation of the original query and key. It employs custom kernels to efficiently identify critical key-value pairs and compute the sparse attention. To accommodate the new sparsity dimension, DSV adopts a hybrid sparsity-aware context parallelism that re-balances the skewed workload across attention heads and blocks due to sparsity heterogeneity. DSV achieves up to 3.02x higher training throughput, scaling to 128 GPUs and 520k token lengths, without quality loss.
- Abstract(参考訳): Diffusion Transformer (DiTs) は高品質なビデオの生成において顕著な性能を示した。
しかし、特に高精細長ビデオでは、処理時間の最大95%を消費し、特別なコンテキスト並列性を要求することができる。
本稿では,経験的に観察したダイナミックアテンション空間を利用して,DSVによるビデオDiTトレーニングを高速化する手法を提案する。
DSVは2段階のアルゴリズムを用いて、元のクエリとキーの低ランクベースの近似によって動的空間パターンをキャプチャする。
キーと値のペアを効率よく識別し、スパースアテンションを計算するためにカスタムカーネルを使用する。
新しいスパシティ次元に対応するために、DSVは、スキューされたワークロードを、スポーティの不均一性のために注意頭やブロック間で再バランスさせる、ハイブリッドなスペーシティ対応のコンテキスト並列性を採用している。
DSVは最大3.02倍のトレーニングスループットを実現し、128GPUと520kトークン長までスケールアップする。
関連論文リスト
- Generating, Fast and Slow: Scalable Parallel Video Generation with Video Interface Networks [21.710127132217526]
本稿では,ビデオ・インタフェース・ネットワーク (VIN) と呼ばれる新しいパラダイムを導入し,ビデオ・チャンクの並列推論を可能にする抽象化モジュールでDiTを拡張した。
VINは局所チャンクのノイズの多い入力と符号化された表現からグローバルセマンティクスをエンコードする。
フルジェネレーションよりも25~40%少ないFLOPを用いて,最先端動作のスムーズさを実現する。
論文 参考訳(メタデータ) (2025-03-21T21:13:02Z) - Training-free and Adaptive Sparse Attention for Efficient Long Video Generation [31.615453637053793]
Diffusion Transformers (DiTs) による高忠実度長ビデオの生成は、しばしば大きな遅延によって妨げられる。
本稿では,最初の動的パターンとオンライン精密検索スパースアテンション手法であるAdaSpaを提案する。
AdaSpaは適応的なプラグアンドプレイソリューションとして実装されており、既存のDiTとシームレスに統合することができる。
論文 参考訳(メタデータ) (2025-02-28T14:11:20Z) - Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models [89.79067761383855]
Vchitect-2.0は、大規模テキスト・ビデオ生成のためにビデオ拡散モデルをスケールアップするために設計された並列トランスフォーマーアーキテクチャである。
新たなマルチモーダル拡散ブロックを導入することで,テキスト記述と生成されたビデオフレームの整合性を実現する。
メモリと計算のボトルネックを克服するために,メモリ効率のトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-14T21:53:11Z) - ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation [83.62931466231898]
本稿では,長期ビデオ生成のための自己回帰モデルを用いた拡散変換器を高速化するフレームワークARLONを提案する。
潜在ベクトル量子変分オートコーダ(VQ-VAE)は、DiTモデルの入力潜時空間をコンパクトなビジュアルトークンに圧縮する。
適応ノルムベースのセマンティックインジェクションモジュールは、ARモデルから粗い離散視覚ユニットをDiTモデルに統合する。
論文 参考訳(メタデータ) (2024-10-27T16:28:28Z) - DMVC: Multi-Camera Video Compression Network aimed at Improving Deep Learning Accuracy [22.871591373774802]
ユビキタスビデオデータの時代に適した最先端のビデオ圧縮フレームワークを提案する。
人間の視覚知覚を優先する従来の圧縮手法とは異なり、我々の革新的なアプローチは、深層学習の精度に重要な意味情報の保存に重点を置いている。
設計されたディープラーニングアルゴリズムに基づいて、冗長性から必然的に重要な情報を分離し、機械学習タスクに最も関連性の高いデータの供給を確実にする。
論文 参考訳(メタデータ) (2024-10-24T03:29:57Z) - T2V-Turbo-v2: Enhancing Video Generation Model Post-Training through Data, Reward, and Conditional Guidance Design [79.7289790249621]
提案手法であるT2V-Turbo-v2は、様々な監視信号を統合することにより、大幅な進歩をもたらす。
特定の学習目標に対するデータセットの調整の重要性を強調した。
トレーニングデータセットから動作ガイダンスを抽出し,ODEソルバに組み込むことにより,このアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-10-08T04:30:06Z) - V^3: Viewing Volumetric Videos on Mobiles via Streamable 2D Dynamic Gaussians [53.614560799043545]
V3 (Viewing Volumetric Videos) は,ダイナミックガウスのストリーミングによる高品質なモバイルレンダリングを実現する,新たなアプローチである。
私たちの重要なイノベーションは、ダイナミックな3DGSを2Dビデオと見なすことで、ハードウェアビデオコーデックの使用を促進することです。
モバイル端末でダイナミックなガウシアンをストリームする最初の手段として、私たちのコンパニオンプレーヤーは、前例のないボリュームビデオ体験をユーザに提供します。
論文 参考訳(メタデータ) (2024-09-20T16:54:27Z) - Dysen-VDM: Empowering Dynamics-aware Text-to-Video Diffusion with LLMs [112.39389727164594]
テキスト・ツー・ビデオ(T2V)合成は,最近出現した拡散モデル (DM) が,過去のアプローチよりも有望な性能を示したコミュニティで注目を集めている。
既存の最先端のDMは高精細なビデオ生成を実現する能力があるが、ビデオ合成の要点である時間力学モデリングに関して重要な制限(例えば、アクション発生障害、粗雑なビデオ運動)に悩まされる。
本研究では,高品位T2V生成のためのDMの映像ダイナミックスに対する意識向上について検討する。
論文 参考訳(メタデータ) (2023-08-26T08:31:48Z) - SViTT: Temporal Learning of Sparse Video-Text Transformers [65.93031164906812]
SViTTは,多フレーム推論が可能な疎ビデオテキストアーキテクチャであり,注目度の高い単純変換器よりもはるかに低コストである。
SViTTは、自己注意におけるトークン間のクエリキー通信を制限するエッジ空間と、非形式的視覚トークンを破棄する空間の2つの形式を採用している。
論文 参考訳(メタデータ) (2023-04-18T08:17:58Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
我々は,学習可能な位置特徴(NVP)を用いて,映像を潜時符号として効果的に再生するニューラル表現の訓練方法を示す。
一般的なUVGベンチマークにおけるNVPの優位性を実証し,先行技術と比較して,NVPは2倍の速度(5分以内)で走行するだけでなく,符号化品質も34.07rightarrow$34.57(PSNR測定値で測定)に上回っている。
論文 参考訳(メタデータ) (2022-10-13T08:15:08Z) - Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [55.088635195893325]
クロスビュービデオ検索のための最初の量子化表現学習法,すなわちHybrid Contrastive Quantization(HCQ)を提案する。
HCQは、粗粒度と微粒度の両方を変換器で学習し、テキストやビデオの補完的な理解を提供する。
3つのWebビデオベンチマークデータセットの実験により、HCQは最先端の非圧縮検索手法と競合する性能を示す。
論文 参考訳(メタデータ) (2022-02-07T18:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。