Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2502.07631v1
- Date: Tue, 11 Feb 2025 15:21:31 GMT
- Title: Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
- Authors: Yinzhe Shen, Ömer Şahin Taş, Kaiwen Wang, Royden Wagner, Christoph Stiller,
- Abstract summary: We propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method.
We employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer.
Our method achieves state-of-the-art collision rates in open-loop planning evaluation without any modifications to the planning module.
- Score: 7.620469713146574
- License:
- Abstract: Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion tasks, such as prediction and planning, always impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method separating semantic and motion learning, similar to the Bayes filter. Specifically, we employ a set of learned motion queries that operate in parallel with the detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset show improvements of 5% in detection and 11% in tracking. Our method achieves state-of-the-art collision rates in open-loop planning evaluation without any modifications to the planning module.
Related papers
- Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs [11.127555705122283]
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs.
Our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices.
We propose a methodology for identifying and extracting relevant interaction trajectory data from the Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs.
arXiv Detail & Related papers (2025-01-21T22:59:50Z) - Event-Based Tracking Any Point with Motion-Augmented Temporal Consistency [58.719310295870024]
This paper presents an event-based framework for tracking any point.
It tackles the challenges posed by spatial sparsity and motion sensitivity in events.
It achieves 150% faster processing with competitive model parameters.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - T4P: Test-Time Training of Trajectory Prediction via Masked Autoencoder and Actor-specific Token Memory [39.021321011792786]
Trajectory prediction is a challenging problem that requires considering interactions among multiple actors.
Data-driven approaches have been used to address this complex problem, but they suffer from unreliable predictions under distribution shifts during test time.
We propose several online learning methods using regression loss from the ground truth of observed data.
Our method surpasses the performance of existing state-of-the-art online learning methods in terms of both prediction accuracy and computational efficiency.
arXiv Detail & Related papers (2024-03-15T06:47:14Z) - Improved LiDAR Odometry and Mapping using Deep Semantic Segmentation and
Novel Outliers Detection [1.0334138809056097]
We propose a novel framework for real-time LiDAR odometry and mapping based on LOAM architecture for fast moving platforms.
Our framework utilizes semantic information produced by a deep learning model to improve point-to-line and point-to-plane matching.
We study the effect of improving the matching process on the robustness of LiDAR odometry against high speed motion.
arXiv Detail & Related papers (2024-03-05T16:53:24Z) - Simultaneous Clutter Detection and Semantic Segmentation of Moving
Objects for Automotive Radar Data [12.96486891333286]
Radar sensors are an important part of the environment perception system of autonomous vehicles.
One of the first steps during the processing of radar point clouds is often the detection of clutter.
Another common objective is the semantic segmentation of moving road users.
We show that our setup is highly effective and outperforms every existing network for semantic segmentation on the RadarScenes dataset.
arXiv Detail & Related papers (2023-11-13T11:29:38Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.