IU4Rec: Interest Unit-Based Product Organization and Recommendation for E-Commerce Platform
- URL: http://arxiv.org/abs/2502.07658v1
- Date: Tue, 11 Feb 2025 15:46:28 GMT
- Title: IU4Rec: Interest Unit-Based Product Organization and Recommendation for E-Commerce Platform
- Authors: Wenhao Wu, Xiaojie Li, Lin Wang, Jialiang Zhou, Di Wu, Qinye Xie, Qingheng Zhang, Yin Zhang, Shuguang Han, Fei Huang, Junfeng Chen,
- Abstract summary: Most items on Xianyu posted from individual sellers often have limited stock available for distribution, and once the product is sold, it's no longer available for distribution.
We introduce textbfIU4Rec, an textbfInterest textbfUnit-based two-stage textbfRecommendation system framework.
In the first stage, the focus is on recommend these Interest Units, capturing broad-level interests.
In the second stage, it guides users to find the best option among similar products within the selected
- Score: 43.562618054958925
- License:
- Abstract: Most recommendation systems typically follow a product-based paradigm utilizing user-product interactions to identify the most engaging items for users. However, this product-based paradigm has notable drawbacks for Xianyu~\footnote{Xianyu is China's largest online C2C e-commerce platform where a large portion of the product are post by individual sellers}. Most of the product on Xianyu posted from individual sellers often have limited stock available for distribution, and once the product is sold, it's no longer available for distribution. This result in most items distributed product on Xianyu having relatively few interactions, affecting the effectiveness of traditional recommendation depending on accumulating user-item interactions. To address these issues, we introduce \textbf{IU4Rec}, an \textbf{I}nterest \textbf{U}nit-based two-stage \textbf{Rec}ommendation system framework. We first group products into clusters based on attributes such as category, image, and semantics. These IUs are then integrated into the Recommendation system, delivering both product and technological innovations. IU4Rec begins by grouping products into clusters based on attributes such as category, image, and semantics, forming Interest Units (IUs). Then we redesign the recommendation process into two stages. In the first stage, the focus is on recommend these Interest Units, capturing broad-level interests. In the second stage, it guides users to find the best option among similar products within the selected Interest Unit. User-IU interactions are incorporated into our ranking models, offering the advantage of more persistent IU behaviors compared to item-specific interactions. Experimental results on the production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed IU-centric recommendation approach.
Related papers
- Centrality-aware Product Retrieval and Ranking [14.710718676076327]
This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries.
We curate samples from eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent.
We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search.
arXiv Detail & Related papers (2024-10-21T11:59:14Z) - Price-guided user attention in large-scale E-commerce group recommendation [4.899646467568438]
We analyze user attention scores from a widely-used group recommendation model on a real-world E-commerce dataset.
We propose a novel group recommendation approach that incorporates item price as a guiding factor for user aggregation.
Our results demonstrate that our price-guided user attention approach outperforms the state-of-the-art methods in terms of hit ratio and mean square error.
arXiv Detail & Related papers (2024-10-02T22:46:51Z) - Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models [50.370043676415875]
In smart retail applications, the large number of products and their frequent turnover necessitate reliable zero-shot object classification methods.
We introduce the MIMEX dataset, comprising 28 distinct product categories.
We benchmark the zero-shot object classification performance of state-of-the-art vision-language models (VLMs) on the proposed MIMEX dataset.
arXiv Detail & Related papers (2024-09-23T12:28:40Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Two Is Better Than One: Dual Embeddings for Complementary Product
Recommendations [2.294014185517203]
We apply a novel approach to finding complementary items by leveraging dual embedding representations for products.
Our model is effective yet simple to implement, making it a great candidate for generating complementary item recommendations at any e-commerce website.
arXiv Detail & Related papers (2022-11-28T00:58:21Z) - ItemSage: Learning Product Embeddings for Shopping Recommendations at
Pinterest [60.841761065439414]
At Pinterest, we build a single set of product embeddings called ItemSage to provide relevant recommendations in all shopping use cases.
This approach has led to significant improvements in engagement and conversion metrics, while reducing both infrastructure and maintenance cost.
arXiv Detail & Related papers (2022-05-24T02:28:58Z) - CUSTOM: Aspect-Oriented Product Summarization for E-Commerce [33.148235036915885]
Product summarization aims to automatically generate product descriptions, which is of great commercial potential.
Considering the customer preferences on different product aspects, it would benefit from generating aspect-oriented customized summaries.
We propose CUSTOM, which generates diverse and controllable summaries towards different product aspects.
arXiv Detail & Related papers (2021-08-18T07:26:22Z) - On component interactions in two-stage recommender systems [82.38014314502861]
Two-stage recommenders are used by many online platforms, including YouTube, LinkedIn, and Pinterest.
We show that interactions between the ranker and the nominators substantially affect the overall performance.
In particular, using a Mixture-of-Experts approach, we train the nominators to specialize on different subsets of the item pool.
arXiv Detail & Related papers (2021-06-28T20:53:23Z) - Dual-embedding based Neural Collaborative Filtering for Recommender
Systems [0.7949579654743338]
We propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering.
In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation.
arXiv Detail & Related papers (2021-02-04T11:32:11Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.