A Framework for LLM-powered Design Assistants
- URL: http://arxiv.org/abs/2502.07698v1
- Date: Tue, 11 Feb 2025 16:51:11 GMT
- Title: A Framework for LLM-powered Design Assistants
- Authors: Swaroop Panda,
- Abstract summary: Large language models (LLMs) are AI systems engineered to analyze and produce text resembling human language, leveraging extensive datasets.
This study introduces a framework wherein LLMs are employed as Design Assistants, focusing on three key modalities within the Design Process: Idea Exploration, Dialogue with Designers, and Design Evaluation.
- Score: 0.0
- License:
- Abstract: Design assistants are frameworks, tools or applications intended to facilitate both the creative and technical facets of design processes. Large language models (LLMs) are AI systems engineered to analyze and produce text resembling human language, leveraging extensive datasets. This study introduces a framework wherein LLMs are employed as Design Assistants, focusing on three key modalities within the Design Process: Idea Exploration, Dialogue with Designers, and Design Evaluation. Importantly, our framework is not confined to a singular design process but is adaptable across various processes.
Related papers
- GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
We propose a VLM-based framework that generates content-aware text logo layouts.
We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously.
To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset.
arXiv Detail & Related papers (2024-11-18T10:04:10Z) - MetaDesigner: Advancing Artistic Typography Through AI-Driven, User-Centric, and Multilingual WordArt Synthesis [65.78359025027457]
MetaDesigner introduces a transformative framework for artistic typography, powered by Large Language Models (LLMs)
Its foundation is a multi-agent system comprising the Pipeline, Glyph, and Texture agents, which collectively orchestrate the creation of customizable WordArt.
arXiv Detail & Related papers (2024-06-28T11:58:26Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We develop an automated text-to-poster system that generates editable posters based on users' design intentions.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
In graphic design, non-professional users often struggle to create visually appealing layouts due to limited skills and resources.
We introduce a novel multimodal instruction-following framework for layout planning, allowing users to easily arrange visual elements into tailored layouts.
Our method not only simplifies the design process for non-professionals but also surpasses the performance of few-shot GPT-4V models, with mIoU higher by 12% on Crello.
arXiv Detail & Related papers (2024-04-23T17:58:33Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Design is a personalized interior designer that allows users to generate and visualize their design goals through natural language communication.
I-Design starts with a team of large language model agents that engage in dialogues and logical reasoning with one another.
The final design is then constructed in 3D by retrieving and integrating assets from an existing object database.
arXiv Detail & Related papers (2024-04-03T16:17:53Z) - DesignGPT: Multi-Agent Collaboration in Design [4.6272626111555955]
DesignGPT uses artificial intelligence agents to simulate the roles of different positions in the design company and allows human designers to collaborate with them in natural language.
Experimental results show that compared with separate AI tools, DesignGPT improves the performance of designers.
arXiv Detail & Related papers (2023-11-20T08:05:52Z) - Experiments on Generative AI-Powered Parametric Modeling and BIM for
Architectural Design [4.710049212041078]
The study experiments with the potential of ChatGPT and generative AI in 3D architectural design.
The framework provides architects with an intuitive and powerful method to convey design intent.
arXiv Detail & Related papers (2023-08-01T01:51:59Z) - How Can Large Language Models Help Humans in Design and Manufacturing? [28.28959612862582]
Large Language Models (LLMs), including GPT-4, provide exciting new opportunities for generative design.
We scrutinize the utility of LLMs in tasks such as: converting a text-based prompt into a design specification, transforming a design into manufacturing instructions, producing a design space and design variations, computing the performance of a design, and searching for designs predicated on performance.
By exposing these limitations, we aspire to catalyze the continued improvement and progression of these models.
arXiv Detail & Related papers (2023-07-25T17:30:38Z) - Exploring Challenges and Opportunities to Support Designers in Learning
to Co-create with AI-based Manufacturing Design Tools [31.685493295306387]
AI-based design tools are proliferating in professional software to assist engineering and industrial designers in complex manufacturing and design tasks.
These tools take on more agentic roles than traditional computer-aided design tools and are often portrayed as "co-creators"
To date, we know little about how engineering designers learn to work with AI-based design tools.
arXiv Detail & Related papers (2023-03-01T02:57:05Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Creating User Interface Mock-ups from High-Level Text Descriptions with
Deep-Learning Models [19.63933191791183]
We introduce three deep-learning techniques to create low-fidelity UI mock-ups from a natural language phrase.
We quantitatively and qualitatively compare and contrast each method's ability in suggesting coherent, diverse and relevant UI design mock-ups.
arXiv Detail & Related papers (2021-10-14T23:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.