GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts
- URL: http://arxiv.org/abs/2411.11435v1
- Date: Mon, 18 Nov 2024 10:04:10 GMT
- Title: GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts
- Authors: Junwen He, Yifan Wang, Lijun Wang, Huchuan Lu, Jun-Yan He, Chenyang Li, Hanyuan Chen, Jin-Peng Lan, Bin Luo, Yifeng Geng,
- Abstract summary: We propose a VLM-based framework that generates content-aware text logo layouts.
We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously.
To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset.
- Score: 53.568057283934714
- License:
- Abstract: Text logo design heavily relies on the creativity and expertise of professional designers, in which arranging element layouts is one of the most important procedures. However, few attention has been paid to this specific task which needs to take precise textural details and user constraints into consideration, but only on the broader tasks such as document/poster layout generation. In this paper, we propose a VLM-based framework that generates content-aware text logo layouts by integrating multi-modal inputs with user constraints, supporting a more flexible and stable layout design in real-world applications. We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously, while does not face performance degradation. To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset. Except for the geometric annotations (e.g. text masks and character recognition), we also compliment with comprehensive layout descriptions in natural language format, for more effective training to have reasoning ability when dealing with complex layouts and custom user constraints. Experimental studies demonstrate the effectiveness of our proposed model and datasets, when comparing with previous methods in various benchmarks to evaluate geometric aesthetics and human preferences. The code and datasets will be publicly available.
Related papers
- PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We conduct extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - PosterLlama: Bridging Design Ability of Langauge Model to Contents-Aware Layout Generation [6.855409699832414]
PosterLlama is a network designed for generating visually and textually coherent layouts.
Our evaluations demonstrate that PosterLlama outperforms existing methods in producing authentic and content-aware layouts.
It supports an unparalleled range of conditions, including but not limited to unconditional layout generation, element conditional layout generation, layout completion, among others, serving as a highly versatile user manipulation tool.
arXiv Detail & Related papers (2024-04-01T08:46:35Z) - LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language
Models [84.16541551923221]
We propose a model that treats layout generation as a code generation task to enhance semantic information.
We develop a Code Instruct Tuning (CIT) approach comprising three interconnected modules.
We attain significant state-of-the-art performance on multiple datasets.
arXiv Detail & Related papers (2023-09-18T06:35:10Z) - A Parse-Then-Place Approach for Generating Graphic Layouts from Textual
Descriptions [50.469491454128246]
We use text as the guidance to create graphic layouts, i.e., Text-to-labeled, aiming to lower the design barriers.
Text-to-labeled is a challenging task, because it needs to consider the implicit, combined, and incomplete constraints from text.
We present a two-stage approach, named parse-then-place, to address this problem.
arXiv Detail & Related papers (2023-08-24T10:37:00Z) - LayoutGPT: Compositional Visual Planning and Generation with Large
Language Models [98.81962282674151]
Large Language Models (LLMs) can serve as visual planners by generating layouts from text conditions.
We propose LayoutGPT, a method to compose in-context visual demonstrations in style sheet language.
arXiv Detail & Related papers (2023-05-24T17:56:16Z) - PosterLayout: A New Benchmark and Approach for Content-aware
Visual-Textual Presentation Layout [62.12447593298437]
Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements.
We propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers.
A novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts.
arXiv Detail & Related papers (2023-03-28T12:48:36Z) - LAMPRET: Layout-Aware Multimodal PreTraining for Document Understanding [17.179384053140236]
Document layout comprises both structural and visual (eg. font-sizes) information that is vital but often ignored by machine learning models.
We propose a novel layout-aware multimodal hierarchical framework, LAMPreT, to model the blocks and the whole document.
We evaluate the proposed model on two layout-aware tasks -- text block filling and image suggestion.
arXiv Detail & Related papers (2021-04-16T23:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.