論文の概要: Direct Ascent Synthesis: Revealing Hidden Generative Capabilities in Discriminative Models
- arxiv url: http://arxiv.org/abs/2502.07753v1
- Date: Tue, 11 Feb 2025 18:27:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:28.948482
- Title: Direct Ascent Synthesis: Revealing Hidden Generative Capabilities in Discriminative Models
- Title(参考訳): 直接アクセント合成:識別モデルにおける隠れ生成能力の解明
- Authors: Stanislav Fort, Jonathan Whitaker,
- Abstract要約: 判別モデルは本質的に強力な生成能力を含むことを示す。
我々の手法であるDirect Ascent Synthesisは、これらの潜伏能力を明らかにする。
DASは複数の空間スケールで最適化を分解することで高品質な画像合成を実現する。
- 参考スコア(独自算出の注目度): 6.501811946908292
- License:
- Abstract: We demonstrate that discriminative models inherently contain powerful generative capabilities, challenging the fundamental distinction between discriminative and generative architectures. Our method, Direct Ascent Synthesis (DAS), reveals these latent capabilities through multi-resolution optimization of CLIP model representations. While traditional inversion attempts produce adversarial patterns, DAS achieves high-quality image synthesis by decomposing optimization across multiple spatial scales (1x1 to 224x224), requiring no additional training. This approach not only enables diverse applications -- from text-to-image generation to style transfer -- but maintains natural image statistics ($1/f^2$ spectrum) and guides the generation away from non-robust adversarial patterns. Our results demonstrate that standard discriminative models encode substantially richer generative knowledge than previously recognized, providing new perspectives on model interpretability and the relationship between adversarial examples and natural image synthesis.
- Abstract(参考訳): 差別モデルには本質的に強力な生成能力が含まれており、差別的アーキテクチャと生成的アーキテクチャの根本的な区別に挑戦する。
提案手法は,CLIPモデル表現の多分解能最適化により,これらの潜在能力を明らかにする。
従来の逆転試行は逆転パターンを生成するが、DASは複数の空間スケール(1x1から224x224)で最適化を分解して高品質な画像合成を実現し、追加の訓練を必要としない。
このアプローチは、テキストから画像の生成からスタイルの転送まで、多様なアプリケーションを可能にするだけでなく、自然な画像統計(1/f^2$スペクトル)を維持し、非ロマンスな敵対パターンから生成を導く。
以上の結果から,標準識別モデルは,従来認識されていたよりもかなり豊かな生成知識をコード化しており,モデル解釈可能性や,敵対的な例と自然な画像合成との関係について新たな視点を提供する。
関連論文リスト
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
多様な条件生成タスクを処理するための、シンプルで統一されたフレームワークを導入します。
提案手法は,異なる推論時間サンプリング方式による多目的化を実現する。
我々のモデルは、非親密なアライメントや粗い条件付けのような追加機能をサポートしています。
論文 参考訳(メタデータ) (2024-10-15T09:41:43Z) - Can Generative Models Improve Self-Supervised Representation Learning? [0.7999703756441756]
生成モデルを利用して意味論的に一貫した画像拡張を生成することにより、自己教師付き学習(SSL)パラダイムを充実させるフレームワークを提案する。
その結果,下流タスクにおいて,学習した視覚表現の精度を最大10%向上させることができた。
論文 参考訳(メタデータ) (2024-03-09T17:17:07Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
本稿では,条件付き画像生成のための多目的フレームワークを提案する。
CNNの帰納バイアスと自己回帰の強力なシーケンスモデリングが組み込まれている。
提案手法は,最先端技術と比較して,優れた多彩な画像生成性能を実現する。
論文 参考訳(メタデータ) (2022-07-21T22:19:17Z) - Diversity vs. Recognizability: Human-like generalization in one-shot
generative models [5.964436882344729]
サンプル認識可能性と多様性の2つの軸に沿った1ショット生成モデルを評価するための新しい枠組みを提案する。
まず、GANのようなモデルとVAEのようなモデルが多様性認識性空間の反対側にあることを示す。
対照的に、非絡み合いは、認識可能性の最大化に使用できるパラボラ曲線に沿ってモデルを輸送する。
論文 参考訳(メタデータ) (2022-05-20T13:17:08Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
IMGE-Guided Model INvErsion (IMAGINE) と呼ばれるインバージョンベースの手法を導入し、高品質で多様な画像を生成します。
我々は,事前学習した分類器から画像意味論の知識を活用し,妥当な世代を実現する。
IMAGINEは,1)合成中の意味的特異性制約を同時に実施し,2)ジェネレータトレーニングなしでリアルな画像を生成し,3)生成過程を直感的に制御する。
論文 参考訳(メタデータ) (2021-04-13T02:00:24Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。