A Flag Decomposition for Hierarchical Datasets
- URL: http://arxiv.org/abs/2502.07782v1
- Date: Tue, 11 Feb 2025 18:59:52 GMT
- Title: A Flag Decomposition for Hierarchical Datasets
- Authors: Nathan Mankovich, Ignacio Santamaria, Gustau Camps-Valls, Tolga Birdal,
- Abstract summary: Flag manifold encode hierarchical nested sequences of subspaces.
Current applications are often restricted to extracting flags using common matrix decomposition methods.
We propose a novel, flag-based method that decomposes arbitrary hierarchical real-preserving data into a hierarchy-valued flag representation in Stiefel coordinates.
- Score: 17.424354744499695
- License:
- Abstract: Flag manifolds encode hierarchical nested sequences of subspaces and serve as powerful structures for various computer vision and machine learning applications. Despite their utility in tasks such as dimensionality reduction, motion averaging, and subspace clustering, current applications are often restricted to extracting flags using common matrix decomposition methods like the singular value decomposition. Here, we address the need for a general algorithm to factorize and work with hierarchical datasets. In particular, we propose a novel, flag-based method that decomposes arbitrary hierarchical real-valued data into a hierarchy-preserving flag representation in Stiefel coordinates. Our work harnesses the potential of flag manifolds in applications including denoising, clustering, and few-shot learning.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Chordal Averaging on Flag Manifolds and Its Applications [22.357999963733302]
This paper presents a new, provably-convergent algorithm for computing the flag-mean and flag-median of a set of points on a flag manifold under the chordal metric.
arXiv Detail & Related papers (2023-03-23T17:57:28Z) - Contrastive Multi-view Hyperbolic Hierarchical Clustering [33.050054725595736]
We propose Contrastive Multi-view Hyperbolic Hierarchical Clustering (CMHHC)
It consists of three components, i.e., multi-view alignment learning, aligned feature similarity learning, and continuous hyperbolic hierarchical clustering.
Experimental results on five real-world datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-05-05T12:56:55Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
The proposed method can improve several state-of-the-art baselines by a large margin (up to $33%$ relative gain) in terms of Recall@50.
Experiments show that the proposed simple yet effective method can improve several state-of-the-art baselines by a large margin.
arXiv Detail & Related papers (2020-09-12T17:36:53Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - A Multiscale Graph Convolutional Network Using Hierarchical Clustering [0.0]
A novel architecture is explored which exploits this information through a multiscale decomposition.
A dendrogram is produced by a Girvan-Newman hierarchical clustering algorithm.
The architecture is tested on a benchmark citation network, demonstrating competitive performance.
arXiv Detail & Related papers (2020-06-22T18:13:03Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
We apply graph convolution into the semantic segmentation task and propose an improved Laplacian.
The graph reasoning is directly performed in the original feature space organized as a spatial pyramid.
We achieve comparable performance with advantages in computational and memory overhead.
arXiv Detail & Related papers (2020-03-23T12:28:07Z) - Data Structures & Algorithms for Exact Inference in Hierarchical
Clustering [41.24805506595378]
We present novel dynamic-programming algorithms for emphexact inference in hierarchical clustering based on a novel trellis data structure.
Our algorithms scale in time and space proportional to the powerset of $N$ elements which is super-exponentially more efficient than explicitly considering each of the (2N-3)!! possible hierarchies.
arXiv Detail & Related papers (2020-02-26T17:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.