neuro2voc: Decoding Vocalizations from Neural Activity
- URL: http://arxiv.org/abs/2502.07800v1
- Date: Sun, 02 Feb 2025 11:09:31 GMT
- Title: neuro2voc: Decoding Vocalizations from Neural Activity
- Authors: Fei Gao,
- Abstract summary: This master project investigates experimental methods for decoding zebra finch motor outputs.
XGBoost with SHAP analysis trained on spike rates revealed neuronal interaction patterns crucial for syllable classification.
A combined contrastive learning-VAE framework successfully generated spectrograms from binned neural data.
- Score: 3.1913357260723303
- License:
- Abstract: Accurate decoding of neural spike trains and relating them to motor output is a challenging task due to the inherent sparsity and length in neural spikes and the complexity of brain circuits. This master project investigates experimental methods for decoding zebra finch motor outputs (in both discrete syllables and continuous spectrograms), from invasive neural recordings obtained from Neuropixels. There are three major achievements: (1) XGBoost with SHAP analysis trained on spike rates revealed neuronal interaction patterns crucial for syllable classification. (2) Novel method (tokenizing neural data with GPT2) and architecture (Mamba2) demonstrated potential for decoding of syllables using spikes. (3) A combined contrastive learning-VAE framework successfully generated spectrograms from binned neural data. This work establishes a promising foundation for neural decoding of complex motor outputs and offers several novel methodological approaches for processing sparse neural data.
Related papers
- Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
We introduce a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks.
Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections.
Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data.
arXiv Detail & Related papers (2023-12-10T09:06:16Z) - Deep Learning for real-time neural decoding of grasp [0.0]
We present a Deep Learning-based approach to the decoding of neural signals for grasp type classification.
The main goal of the presented approach is to improve over state-of-the-art decoding accuracy without relying on any prior neuroscience knowledge.
arXiv Detail & Related papers (2023-11-02T08:26:29Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
We introduce a neural spike coding model called spiketrumtemporal, to transform the time-varying analog signals into efficient spike patterns.
The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks.
arXiv Detail & Related papers (2023-09-11T13:06:19Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Surrogate Gradient Spiking Neural Networks as Encoders for Large
Vocabulary Continuous Speech Recognition [91.39701446828144]
We show that spiking neural networks can be trained like standard recurrent neural networks using the surrogate gradient method.
They have shown promising results on speech command recognition tasks.
In contrast to their recurrent non-spiking counterparts, they show robustness to exploding gradient problems without the need to use gates.
arXiv Detail & Related papers (2022-12-01T12:36:26Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
neural networks encode inputs in the form of combinations of individual neurons' activities.
These neural codes present a computational challenge due to their high dimensionality and often large volumes of data.
We apply methods previously applied to small examples and apply them to large neural codes generated by experiments.
arXiv Detail & Related papers (2022-10-19T11:58:26Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Efficient Neuromorphic Signal Processing with Loihi 2 [6.32784133039548]
We show how Resonate-and-Firetemporal (RF) neurons can be used to compute the Short Time Fourier Transform (STFT) with similar computational complexity but 47x less output bandwidth than the conventional STFT.
We also demonstrate promising preliminary results using backpropagation to train RF neurons for audio classification tasks.
arXiv Detail & Related papers (2021-11-05T22:37:05Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
Prior methods learn the neural-symbolic models using reinforcement learning approaches.
We introduce the textbfgrammar model as a textitsymbolic prior to bridge neural perception and symbolic reasoning.
We propose a novel textbfback-search algorithm which mimics the top-down human-like learning procedure to propagate the error.
arXiv Detail & Related papers (2020-06-11T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.