CrossVideoMAE: Self-Supervised Image-Video Representation Learning with Masked Autoencoders
- URL: http://arxiv.org/abs/2502.07811v1
- Date: Sat, 08 Feb 2025 06:15:39 GMT
- Title: CrossVideoMAE: Self-Supervised Image-Video Representation Learning with Masked Autoencoders
- Authors: Shihab Aaqil Ahamed, Malitha Gunawardhana, Liel David, Michael Sidorov, Daniel Harari, Muhammad Haris Khan,
- Abstract summary: CrossVideoMAE learns both video-level and frame-level richtemporal representations and semantic attributes.<n>Our method integrates mutualtemporal information from videos with spatial information from sampled frames.<n>This is critical for acquiring rich, label-free guiding signals from both video and frame image modalities in a self-supervised manner.
- Score: 6.159948396712944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current video-based Masked Autoencoders (MAEs) primarily focus on learning effective spatiotemporal representations from a visual perspective, which may lead the model to prioritize general spatial-temporal patterns but often overlook nuanced semantic attributes like specific interactions or sequences that define actions - such as action-specific features that align more closely with human cognition for space-time correspondence. This can limit the model's ability to capture the essence of certain actions that are contextually rich and continuous. Humans are capable of mapping visual concepts, object view invariance, and semantic attributes available in static instances to comprehend natural dynamic scenes or videos. Existing MAEs for videos and static images rely on separate datasets for videos and images, which may lack the rich semantic attributes necessary for fully understanding the learned concepts, especially when compared to using video and corresponding sampled frame images together. To this end, we propose CrossVideoMAE an end-to-end self-supervised cross-modal contrastive learning MAE that effectively learns both video-level and frame-level rich spatiotemporal representations and semantic attributes. Our method integrates mutual spatiotemporal information from videos with spatial information from sampled frames within a feature-invariant space, while encouraging invariance to augmentations within the video domain. This objective is achieved through jointly embedding features of visible tokens and combining feature correspondence within and across modalities, which is critical for acquiring rich, label-free guiding signals from both video and frame image modalities in a self-supervised manner. Extensive experiments demonstrate that our approach surpasses previous state-of-the-art methods and ablation studies validate the effectiveness of our approach.
Related papers
- SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning [50.98341607245458]
Masked video modeling is an effective paradigm for video self-supervised learning (SSL)
This paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics.
We establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data.
arXiv Detail & Related papers (2025-04-01T08:20:55Z) - Leveraging Motion Information for Better Self-Supervised Video Correspondence Learning [5.372301053935416]
We develop an efficient self-supervised Video Correspondence Learning framework.
First, we design a dedicated Motion Enhancement Engine that emphasizes capturing the dynamic motion of objects in videos.
In addition, we introduce a flexible sampling strategy for inter-pixel correspondence information.
arXiv Detail & Related papers (2025-03-15T07:25:40Z) - Transforming Static Images Using Generative Models for Video Salient Object Detection [15.701293552584863]
We show that image-to-video diffusion models can generate realistic transformations of static images while understanding the contextual relationships between image components.
This ability allows the model to generate plausible optical flows, preserving semantic integrity while reflecting the independent motion of scene elements.
Our approach achieves state-of-the-art performance across all public benchmark datasets, outperforming existing approaches.
arXiv Detail & Related papers (2024-11-21T09:41:33Z) - Vamos: Versatile Action Models for Video Understanding [23.631145570126268]
We propose versatile action models (Vamos), a learning framework powered by a large language model as the reasoner''
We evaluate Vamos on five benchmarks, Ego4D, NeXT-QA, IntentQA, Spacewalk-18, and Ego on its capability to model temporal dynamics, encode visual history, and perform reasoning.
arXiv Detail & Related papers (2023-11-22T17:44:24Z) - TimeBalance: Temporally-Invariant and Temporally-Distinctive Video
Representations for Semi-Supervised Action Recognition [68.53072549422775]
We propose a student-teacher semi-supervised learning framework, TimeBalance.
We distill the knowledge from a temporally-invariant and a temporally-distinctive teacher.
Our method achieves state-of-the-art performance on three action recognition benchmarks.
arXiv Detail & Related papers (2023-03-28T19:28:54Z) - Leaping Into Memories: Space-Time Deep Feature Synthesis [93.10032043225362]
We propose LEAPS, an architecture-independent method for synthesizing videos from internal models.
We quantitatively and qualitatively evaluate the applicability of LEAPS by inverting a range of architectures convolutional attention-based on Kinetics-400.
arXiv Detail & Related papers (2023-03-17T12:55:22Z) - Self-supervised video pretraining yields robust and more human-aligned visual representations [14.599429594703539]
General representations far outperform prior video pretraining methods on image understanding tasks.<n>VITO representations are significantly more robust to natural and synthetic deformations than image-, video-, and adversarially-trained ones.<n>These results suggest that video pretraining could be a simple way of learning unified, robust, and human-aligned representations of the visual world.
arXiv Detail & Related papers (2022-10-12T17:30:12Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
Motion-Contrastive Perception Network (MCPNet)
MCPNet consists of two branches, namely, Motion Information Perception (MIP) and Contrastive Instance Perception (CIP)
Our method outperforms current state-of-the-art visual-only self-supervised approaches.
arXiv Detail & Related papers (2022-04-10T05:34:46Z) - End-to-end Multi-modal Video Temporal Grounding [105.36814858748285]
We propose a multi-modal framework to extract complementary information from videos.
We adopt RGB images for appearance, optical flow for motion, and depth maps for image structure.
We conduct experiments on the Charades-STA and ActivityNet Captions datasets, and show that the proposed method performs favorably against state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-12T17:58:10Z) - VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive
Learning [82.09856883441044]
Video understanding relies on perceiving the global content modeling its internal connections.
We propose a block-wise strategy where we mask neighboring video tokens in both spatial and temporal domains.
We also add an augmentation-free contrastive learning method to further capture global content.
arXiv Detail & Related papers (2021-06-21T16:48:19Z) - Referring Segmentation in Images and Videos with Cross-Modal
Self-Attention Network [27.792054915363106]
Cross-modal self-attention (CMSA) module to utilize fine details of individual words and the input image or video.
gated multi-level fusion (GMLF) module to selectively integrate self-attentive cross-modal features.
Cross-frame self-attention (CFSA) module to effectively integrate temporal information in consecutive frames.
arXiv Detail & Related papers (2021-02-09T11:27:59Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
We study the self-supervised learning of visual correspondence using unlabeled videos in the wild.
Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation.
Our framework outperforms the recent self-supervised correspondence methods on a range of visual tasks.
arXiv Detail & Related papers (2020-12-09T14:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.