Unpaired Image Dehazing via Kolmogorov-Arnold Transformation of Latent Features
- URL: http://arxiv.org/abs/2502.07812v1
- Date: Sat, 08 Feb 2025 12:24:49 GMT
- Title: Unpaired Image Dehazing via Kolmogorov-Arnold Transformation of Latent Features
- Authors: Le-Anh Tran,
- Abstract summary: This paper proposes an innovative framework for Unsupervised Image Dehazing via Kolmogorov-Arnold Transformation, UID-KAT.
The proposed UID-KAT framework is trained in an unsupervised setting to take advantage of the abundance of real-world data and address the challenge of preparing paired/clean images.
- Score: 0.0
- License:
- Abstract: This paper proposes an innovative framework for Unsupervised Image Dehazing via Kolmogorov-Arnold Transformation, termed UID-KAT. Image dehazing is recognized as a challenging and ill-posed vision task that requires complex transformations and interpretations in the feature space. Recent advancements have introduced Kolmogorov-Arnold Networks (KANs), inspired by the Kolmogorov-Arnold representation theorem, as promising alternatives to Multi-Layer Perceptrons (MLPs) since KANs can leverage their polynomial foundation to more efficiently approximate complex functions while requiring fewer layers than MLPs. Motivated by this potential, this paper explores the use of KANs combined with adversarial training and contrastive learning to model the intricate relationship between hazy and clear images. Adversarial training is employed due to its capacity in producing high-fidelity images, and contrastive learning promotes the model's emphasis on significant features while suppressing the influence of irrelevant information. The proposed UID-KAT framework is trained in an unsupervised setting to take advantage of the abundance of real-world data and address the challenge of preparing paired hazy/clean images. Experimental results show that UID-KAT achieves state-of-the-art dehazing performance across multiple datasets and scenarios, outperforming existing unpaired methods while reducing model complexity. The source code for this work is publicly available at https://github.com/tranleanh/uid-kat.
Related papers
- Multi-Head Attention Driven Dynamic Visual-Semantic Embedding for Enhanced Image-Text Matching [0.8611782340880084]
This study proposes an innovative visual semantic embedding model, Multi-Headed Consensus-Aware Visual-Semantic Embedding (MH-CVSE)
This model introduces a multi-head self-attention mechanism based on the consensus-aware visual semantic embedding model (CVSE) to capture information in multiple subspaces in parallel.
In terms of loss function design, the MH-CVSE model adopts a dynamic weight adjustment strategy to dynamically adjust the weight according to the loss value itself.
arXiv Detail & Related papers (2024-12-26T11:46:22Z) - Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis [43.481539150288434]
This work introduces a new family of.
factor graph Diffusion Models (FG-DMs)
FG-DMs models the joint distribution of.
images and conditioning variables, such as semantic, sketch,.
deep or normal maps via a factor graph decomposition.
arXiv Detail & Related papers (2024-10-29T00:54:00Z) - DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm [3.649619954898362]
Detail Recovery And Contrastive DehazeNet is a detailed image recovery network that tailors enhancements to specific dehazed scene contexts.
A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm.
arXiv Detail & Related papers (2024-10-18T16:48:31Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
We propose mboxtextbfDINO-IR, a multi-task image restoration approach leveraging robust features extracted from DINOv2.
We first propose a pixel-semantic fusion (PSF) module to dynamically fuse DINOV2's shallow features.
By formulating these modules into a unified deep model, we propose a DINO perception contrastive loss to constrain the model training.
arXiv Detail & Related papers (2023-12-04T06:59:55Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
We introduce SODA, a self-supervised diffusion model, designed for representation learning.
The model incorporates an image encoder, which distills a source view into a compact representation, that guides the generation of related novel views.
We show that by imposing a tight bottleneck between the encoder and a denoising decoder, we can turn diffusion models into strong representation learners.
arXiv Detail & Related papers (2023-11-29T18:53:34Z) - CamDiff: Camouflage Image Augmentation via Diffusion Model [83.35960536063857]
CamDiff is a novel approach to synthesize salient objects in camouflaged scenes.
We leverage the latent diffusion model to synthesize salient objects in camouflaged scenes.
Our approach enables flexible editing and efficient large-scale dataset generation at a low cost.
arXiv Detail & Related papers (2023-04-11T19:37:47Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - Unpaired Deep Image Dehazing Using Contrastive Disentanglement Learning [36.24651058888557]
We present an effective unpaired learning based image dehazing network from an unpaired set of clear and hazy images.
We show that our method performs favorably against existing state-of-the-art unpaired dehazing approaches.
arXiv Detail & Related papers (2022-03-15T06:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.