Runtime Tunable Tsetlin Machines for Edge Inference on eFPGAs
- URL: http://arxiv.org/abs/2502.07823v1
- Date: Mon, 10 Feb 2025 12:49:22 GMT
- Title: Runtime Tunable Tsetlin Machines for Edge Inference on eFPGAs
- Authors: Tousif Rahman, Gang Mao, Bob Pattison, Sidharth Maheshwari, Marcos Sartori, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev,
- Abstract summary: eFPGAs allow for the design of hardware accelerators of edge Machine Learning (ML) applications at a lower power budget.
The limited eFPGA logic and memory significantly constrain compute capabilities and model size.
The proposed eFPGA accelerator focuses on minimizing resource usage and allowing flexibility for on-field recalibration over throughput.
- Score: 0.2294388534633318
- License:
- Abstract: Embedded Field-Programmable Gate Arrays (eFPGAs) allow for the design of hardware accelerators of edge Machine Learning (ML) applications at a lower power budget compared with traditional FPGA platforms. However, the limited eFPGA logic and memory significantly constrain compute capabilities and model size. As such, ML application deployment on eFPGAs is in direct contrast with the most recent FPGA approaches developing architecture-specific implementations and maximizing throughput over resource frugality. This paper focuses on the opposite side of this trade-off: the proposed eFPGA accelerator focuses on minimizing resource usage and allowing flexibility for on-field recalibration over throughput. This allows for runtime changes in model size, architecture, and input data dimensionality without offline resynthesis. This is made possible through the use of a bitwise compressed inference architecture of the Tsetlin Machine (TM) algorithm. TM compute does not require any multiplication operations, being limited to only bitwise AND, OR, NOT, summations and additions. Additionally, TM model compression allows the entire model to fit within the on-chip block RAM of the eFPGA. The paper uses this accelerator to propose a strategy for runtime model tuning in the field. The proposed approach uses 2.5x fewer Look-up-Tables (LUTs) and 3.38x fewer registers than the current most resource-fugal design and achieves up to 129x energy reduction compared with low-power microcontrollers running the same ML application.
Related papers
- Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTE is a flexible lookup table engine for LUT-quantized LLMs.
At batch sizes 32 and quantization group size of 128, the FLUTE kernel can be 2-4x faster than existing GEMM kernels.
arXiv Detail & Related papers (2024-07-15T17:55:42Z) - SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs [3.302913401404089]
Sliding window-based static sparse attention mitigates the problem by limiting the attention scope of the input tokens.
We propose a dataflow-aware FPGA-based accelerator design, SWAT, that efficiently leverages the sparsity to achieve scalable performance for long input.
arXiv Detail & Related papers (2024-05-27T10:25:08Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
arXiv Detail & Related papers (2023-12-23T04:27:06Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
We present our development experience for the Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms.
We use the open-source hls4ml and FINN perJ, which aim to democratize AI- hardware codesign of optimized neural networks on FPGAs.
The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms.
arXiv Detail & Related papers (2022-06-23T15:57:17Z) - Multiplierless MP-Kernel Machine For Energy-efficient Edge Devices [6.335302509003343]
We present a novel framework for designing multiplierless kernel machines.
The framework uses a piecewise linear (PWL) approximation based on a margin propagation (MP) technique.
We propose a hardware-friendly MP-based inference and online training algorithm that has been optimized for a Field Programmable Gate Array (FPGA) platform.
arXiv Detail & Related papers (2021-06-03T16:06:08Z) - FTRANS: Energy-Efficient Acceleration of Transformers using FPGA [11.032972017827248]
We propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations.
Our framework significantly reduces the model size of NLP models by up to 16 times.
Our FPGA design achieves 27.07x and 81x improvement in performance and energy efficiency compared to CPU, and up to 8.80x improvement in energy efficiency compared to GPU.
arXiv Detail & Related papers (2020-07-16T18:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.