The establishment of static digital humans and the integration with spinal models
- URL: http://arxiv.org/abs/2502.07844v1
- Date: Tue, 11 Feb 2025 08:21:37 GMT
- Title: The establishment of static digital humans and the integration with spinal models
- Authors: Fujiao Ju, Yuxuan Wang, Shuo Wang, Chengyin Wang, Yinbo Chen, Jianfeng Li, Mingjie Dong, Bin Fang, Qianyu Zhuang,
- Abstract summary: Adolescent idiopathic scoliosis (AIS) significantly affects individuals' health and quality of life.
Traditional imaging techniques offer static views of the spine.
Dynamic digital human modeling represents a major breakthrough in digital medicine.
- Score: 18.434834209150555
- License:
- Abstract: Adolescent idiopathic scoliosis (AIS), a prevalent spinal deformity, significantly affects individuals' health and quality of life. Conventional imaging techniques, such as X - rays, computed tomography (CT), and magnetic resonance imaging (MRI), offer static views of the spine. However, they are restricted in capturing the dynamic changes of the spine and its interactions with overall body motion. Therefore, developing new techniques to address these limitations has become extremely important. Dynamic digital human modeling represents a major breakthrough in digital medicine. It enables a three - dimensional (3D) view of the spine as it changes during daily activities, assisting clinicians in detecting deformities that might be missed in static imaging. Although dynamic modeling holds great potential, constructing an accurate static digital human model is a crucial initial step for high - precision simulations. In this study, our focus is on constructing an accurate static digital human model integrating the spine, which is vital for subsequent dynamic digital human research on AIS. First, we generate human point - cloud data by combining the 3D Gaussian method with the Skinned Multi - Person Linear (SMPL) model from the patient's multi - view images. Then, we fit a standard skeletal model to the generated human model. Next, we align the real spine model reconstructed from CT images with the standard skeletal model. We validated the resulting personalized spine model using X - ray data from six AIS patients, with Cobb angles (used to measure the severity of scoliosis) as evaluation metrics. The results indicate that the model's error was within 1 degree of the actual measurements. This study presents an important method for constructing digital humans.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Morphology-preserving Autoregressive 3D Generative Modelling of the
Brain [2.6498965891119397]
This work proposes a generative model that can be scaled to produce correct, high-resolution, and realistic images of the human brain.
The ability to generate a potentially unlimited amount of data not only enables large-scale studies of human anatomy and pathology without jeopardizing patient privacy, but also significantly advances research in the field of anomaly detection, modality synthesis, learning under limited data, and fair and ethical AI.
arXiv Detail & Related papers (2022-09-07T14:17:42Z) - DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression
for Real-World Clinical Applications [0.9999629695552196]
We propose a novel multi-task deep learning model to predict Alzheimer's disease progression.
Our model integrates high dimensional MRI features from a 3D convolutional neural network with other data modalities.
arXiv Detail & Related papers (2022-03-17T05:42:00Z) - H4D: Human 4D Modeling by Learning Neural Compositional Representation [75.34798886466311]
This work presents a novel framework that can effectively learn a compact and compositional representation for dynamic human.
A simple yet effective linear motion model is proposed to provide a rough and regularized motion estimation.
Experiments demonstrate our method is not only efficacy in recovering dynamic human with accurate motion and detailed geometry, but also amenable to various 4D human related tasks.
arXiv Detail & Related papers (2022-03-02T17:10:49Z) - MedNeRF: Medical Neural Radiance Fields for Reconstructing 3D-aware
CT-Projections from a Single X-ray [14.10611608681131]
Excessive ionising radiation can lead to deterministic and harmful effects on the body.
This paper proposes a Deep Learning model that learns to reconstruct CT projections from a few or even a single-view X-ray.
arXiv Detail & Related papers (2022-02-02T13:25:23Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Classification of Brain Tumours in MR Images using Deep Spatiospatial
Models [0.0]
This paper uses twotemporal models, ResNet (2+1)D and ResNet Mixed Convolution, to classify different types of brain tumours.
It was observed that both these models performed superior to the pure 3D convolutional model, ResNet18.
arXiv Detail & Related papers (2021-05-28T19:27:51Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z) - Inferring the 3D Standing Spine Posture from 2D Radiographs [5.114998342130747]
An upright spinal pose (i.e. standing) under natural weight bearing is crucial for such bio-mechanical analysis.
We propose a novel neural network architecture working vertebra-wise, termed emphTransVert, which takes 2D radiographs and infers the spine's 3D posture.
arXiv Detail & Related papers (2020-07-13T18:37:00Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.