論文の概要: Intrinsic Bias is Predicted by Pretraining Data and Correlates with Downstream Performance in Vision-Language Encoders
- arxiv url: http://arxiv.org/abs/2502.07957v1
- Date: Tue, 11 Feb 2025 21:11:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:34.268721
- Title: Intrinsic Bias is Predicted by Pretraining Data and Correlates with Downstream Performance in Vision-Language Encoders
- Title(参考訳): 固有バイアスの事前学習による予測と視覚言語エンコーダの下流性能の相関
- Authors: Kshitish Ghate, Isaac Slaughter, Kyra Wilson, Mona Diab, Aylin Caliskan,
- Abstract要約: 本稿は,CLIPモデルの上流事前学習要因と下流性能が内在バイアスにどのように関係しているかを,これまでで最大の包括的分析結果として提示する。
55のアーキテクチャを使用して,26のデータセットでトレーニングされた131のCLIPモデルを,さまざまなサイズで検討した。
事前トレーニングデータセットの選択がバイアスの上流で最も重要な予測要因であることに気付きました。
- 参考スコア(独自算出の注目度): 13.474737752636608
- License:
- Abstract: While recent work has found that vision-language models trained under the Contrastive Language Image Pre-training (CLIP) framework contain intrinsic social biases, the extent to which different upstream pre-training features of the framework relate to these biases, and hence how intrinsic bias and downstream performance are connected has been unclear. In this work, we present the largest comprehensive analysis to-date of how the upstream pre-training factors and downstream performance of CLIP models relate to their intrinsic biases. Studying 131 unique CLIP models, trained on 26 datasets, using 55 architectures, and in a variety of sizes, we evaluate bias in each model using 26 well-established unimodal and cross-modal principled Embedding Association Tests. We find that the choice of pre-training dataset is the most significant upstream predictor of bias, whereas architectural variations have minimal impact. Additionally, datasets curated using sophisticated filtering techniques aimed at enhancing downstream model performance tend to be associated with higher levels of intrinsic bias. Finally, we observe that intrinsic bias is often significantly correlated with downstream performance ($0.3 \leq r \leq 0.8$), suggesting that models optimized for performance inadvertently learn to amplify representational biases. Comparisons between unimodal and cross-modal association tests reveal that social group bias depends heavily on the modality. Our findings imply that more sophisticated strategies are needed to address intrinsic model bias for vision-language models across the entire model development pipeline.
- Abstract(参考訳): 近年の研究では、CLIP(Contrastive Language Image Pre-training)フレームワークでトレーニングされた視覚言語モデルには、固有の社会的バイアスが含まれていることが判明している。
本研究は,CLIPモデルの上流事前学習要因と下流性能が本質的バイアスにどのように関係しているかを,これまでで最大の包括的分析結果として提示する。
55のアーキテクチャを用いて,26のデータセットでトレーニングされた131のユニークなCLIPモデルについて検討し,26の確立された単調およびクロスモーダルな埋め込みアソシエーションテストを用いて,各モデルのバイアスを評価する。
事前トレーニングデータセットの選択がバイアスの上流で最も重要な予測要因であることに気付きました。
さらに、下流モデルの性能向上を目的とした洗練されたフィルタリング技術を用いて計算されたデータセットは、固有のバイアスのレベルが高くなる傾向にある。
最後に、本質的なバイアスはしばしば下流のパフォーマンスと著しく相関し(0.3 \leq r \leq 0.8$)、性能に最適化されたモデルが意図せずに表現バイアスを増幅することを示唆する。
一過性の相関試験とクロスモーダルな関連試験を比較すると、社会集団の偏見がモダリティに大きく依存していることが分かる。
我々の発見は、モデル開発パイプライン全体にわたるビジョン言語モデルの本質的なモデルバイアスに対処するために、より洗練された戦略が必要であることを示唆している。
関連論文リスト
- Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
ベンチマークは、機械学習アルゴリズムのパフォーマンスの評価、比較の促進、優れたソリューションの特定に不可欠である。
本稿では,関係抽出タスクにおけるエンティティバイアスの問題に対処する。
本稿では,エンティティの代替によって,エンティティ参照と関係型との擬似相関を破る不偏関係抽出ベンチマークDREBを提案する。
DREBの新たなベースラインを確立するために,データレベルとモデルトレーニングレベルを組み合わせたデバイアス手法であるMixDebiasを導入する。
論文 参考訳(メタデータ) (2025-01-02T17:01:06Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Mitigating Spurious Correlations in Multi-modal Models during
Fine-tuning [18.45898471459533]
モデル一般化を低下させたり、間違った理由でモデルが正しいことを導いたという豪華な相関は、現実世界のデプロイメントにおいて大きな堅牢性に関する懸念の1つです。
本稿では,特定の関心領域の微調整において,刺激的な相関に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-08T05:20:33Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
既存の自然言語理解(NLU)モデルは、特定のデータセットで高いパフォーマンスを達成するために、データセットバイアスに依存することが多い。
本稿では, バイアスの潜在特性を緩和し, バイアスの動的性質を無視するために, DCT(Debiasing contrastive learning)を提案する。
DCTは、ディストリビューション内のパフォーマンスを維持しながら、アウトオブディストリビューションデータセットの最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2022-12-11T06:16:14Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。