Intrinsic Bias is Predicted by Pretraining Data and Correlates with Downstream Performance in Vision-Language Encoders
- URL: http://arxiv.org/abs/2502.07957v1
- Date: Tue, 11 Feb 2025 21:11:47 GMT
- Title: Intrinsic Bias is Predicted by Pretraining Data and Correlates with Downstream Performance in Vision-Language Encoders
- Authors: Kshitish Ghate, Isaac Slaughter, Kyra Wilson, Mona Diab, Aylin Caliskan,
- Abstract summary: We present the largest comprehensive analysis to-date of how the upstream pre-training factors and downstream performance of CLIP models relate to intrinsic biases.
We study 131 unique CLIP models, trained on 26 datasets, using 55 architectures, and in a variety of sizes.
We find that the choice of pre-training dataset is the most significant upstream predictor of bias, whereas architectural variations have minimal impact.
- Score: 13.474737752636608
- License:
- Abstract: While recent work has found that vision-language models trained under the Contrastive Language Image Pre-training (CLIP) framework contain intrinsic social biases, the extent to which different upstream pre-training features of the framework relate to these biases, and hence how intrinsic bias and downstream performance are connected has been unclear. In this work, we present the largest comprehensive analysis to-date of how the upstream pre-training factors and downstream performance of CLIP models relate to their intrinsic biases. Studying 131 unique CLIP models, trained on 26 datasets, using 55 architectures, and in a variety of sizes, we evaluate bias in each model using 26 well-established unimodal and cross-modal principled Embedding Association Tests. We find that the choice of pre-training dataset is the most significant upstream predictor of bias, whereas architectural variations have minimal impact. Additionally, datasets curated using sophisticated filtering techniques aimed at enhancing downstream model performance tend to be associated with higher levels of intrinsic bias. Finally, we observe that intrinsic bias is often significantly correlated with downstream performance ($0.3 \leq r \leq 0.8$), suggesting that models optimized for performance inadvertently learn to amplify representational biases. Comparisons between unimodal and cross-modal association tests reveal that social group bias depends heavily on the modality. Our findings imply that more sophisticated strategies are needed to address intrinsic model bias for vision-language models across the entire model development pipeline.
Related papers
- Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.
This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.
We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.
To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
We propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model.
Our proposed strategy improves the bias identification ability of the auxiliary model.
arXiv Detail & Related papers (2023-12-06T16:15:00Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Mitigating Spurious Correlations in Multi-modal Models during
Fine-tuning [18.45898471459533]
Spurious correlations that degrade model generalization or lead the model to be right for the wrong reasons are one of the main robustness concerns for real-world deployments.
This paper proposes a novel approach to address spurious correlations during fine-tuning for a given domain of interest.
arXiv Detail & Related papers (2023-04-08T05:20:33Z) - Feature-Level Debiased Natural Language Understanding [86.8751772146264]
Existing natural language understanding (NLU) models often rely on dataset biases to achieve high performance on specific datasets.
We propose debiasing contrastive learning (DCT) to mitigate biased latent features and neglect the dynamic nature of bias.
DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance.
arXiv Detail & Related papers (2022-12-11T06:16:14Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.