CIRCUIT: A Benchmark for Circuit Interpretation and Reasoning Capabilities of LLMs
- URL: http://arxiv.org/abs/2502.07980v1
- Date: Tue, 11 Feb 2025 21:53:48 GMT
- Title: CIRCUIT: A Benchmark for Circuit Interpretation and Reasoning Capabilities of LLMs
- Authors: Lejla Skelic, Yan Xu, Matthew Cox, Wenjie Lu, Tao Yu, Ruonan Han,
- Abstract summary: The role of Large Language Models (LLMs) has not been extensively explored in analog circuit design.<n>We created the CIRCUIT dataset consisting of 510 question-answer pairs spanning various levels of analog-circuit-related subjects.<n>The best-performing model on our dataset, GPT-4o, achieves 48.04% accuracy when evaluated on the final numerical answer.
- Score: 15.34624510334892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The role of Large Language Models (LLMs) has not been extensively explored in analog circuit design, which could benefit from a reasoning-based approach that transcends traditional optimization techniques. In particular, despite their growing relevance, there are no benchmarks to assess LLMs' reasoning capability about circuits. Therefore, we created the CIRCUIT dataset consisting of 510 question-answer pairs spanning various levels of analog-circuit-related subjects. The best-performing model on our dataset, GPT-4o, achieves 48.04% accuracy when evaluated on the final numerical answer. To evaluate the robustness of LLMs on our dataset, we introduced a unique feature that enables unit-test-like evaluation by grouping questions into unit tests. In this case, GPT-4o can only pass 27.45% of the unit tests, highlighting that the most advanced LLMs still struggle with understanding circuits, which requires multi-level reasoning, particularly when involving circuit topologies. This circuit-specific benchmark highlights LLMs' limitations, offering valuable insights for advancing their application in analog integrated circuit design.
Related papers
- MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs [25.945493464645548]
multimodal large language models (MLLMs) present promising opportunities for automation and enhancement in Electronic Design Automation (EDA)<n>We introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance across diverse EDA tasks.<n> MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages.
arXiv Detail & Related papers (2025-07-20T05:46:32Z) - Teaching LLM to Reason: Reinforcement Learning from Algorithmic Problems without Code [76.80306464249217]
We propose TeaR, which aims at teaching LLMs to reason better.<n>TeaR leverages careful data curation and reinforcement learning to guide models in discovering optimal reasoning paths through code-related tasks.<n>We conduct extensive experiments using two base models and three long-CoT distillation models, with model sizes ranging from 1.5 billion to 32 billion parameters, and across 17 benchmarks spanning Math, Knowledge, Code, and Logical Reasoning.
arXiv Detail & Related papers (2025-07-10T07:34:05Z) - Benchmarking Large Language Models on Homework Assessment in Circuit Analysis [5.040027178589699]
Large language models (LLMs) have the potential to revolutionize various fields, including code development, robotics, finance, and education.<n>This paper investigates how LLMs can be leveraged in engineering education.<n>We benchmark the capabilities of different LLMs, including GPT-3.5 Turbo, GPT-4o, and Llama 3 70B.
arXiv Detail & Related papers (2025-06-05T15:16:30Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - LLM-based AI Agent for Sizing of Analog and Mixed Signal Circuit [2.979579757819132]
Large Language Models (LLMs) have demonstrated significant potential across various fields.
In this work, we propose an LLM-based AI agent for AMS circuit design to assist in the sizing process.
arXiv Detail & Related papers (2025-04-14T22:18:16Z) - TuRTLe: A Unified Evaluation of LLMs for RTL Generation [0.6010802600885173]
We propose TuRTLe, a unified evaluation framework designed to assess LLMs across key RTL generation tasks.
We benchmark a diverse set of open LLMs and analyze their strengths and weaknesses in EDA-specific tasks.
Our results show that reasoning-based models, such as DeepSeek R1, consistently outperform others across multiple evaluation criteria.
arXiv Detail & Related papers (2025-03-31T07:43:12Z) - Scoring Verifiers: Evaluating Synthetic Verification for Code and Reasoning [59.25951947621526]
We propose an approach which can transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers.
We release four new benchmarks (HE-R, HE-R+, MBPP-R, and MBPP-R+), and analyzed synthetic verification methods with standard, reasoning-based, and reward-based LLMs.
Our experiments show that reasoning can significantly improve test case generation and that scaling the number of test cases enhances the verification accuracy.
arXiv Detail & Related papers (2025-02-19T15:32:11Z) - Reliable Reasoning Beyond Natural Language [0.047888359248129786]
Large Language models (LLMs) often exhibit limitations in their ability to reason reliably and flexibly.
We propose a neurosymbolic approach that prompts LLMs to extract and encode all relevant information from a problem statement as logical code statements.
We then use a logic programming language (Prolog) to conduct the iterative computations of explicit deductive reasoning.
arXiv Detail & Related papers (2024-07-16T04:34:18Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
We consider harnessing the amazing power of language models (LLMs) to solve our task.
We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets.
arXiv Detail & Related papers (2024-01-24T04:28:50Z) - InFoBench: Evaluating Instruction Following Ability in Large Language
Models [57.27152890085759]
Decomposed Requirements Following Ratio (DRFR) is a new metric for evaluating Large Language Models' (LLMs) ability to follow instructions.
We present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories.
arXiv Detail & Related papers (2024-01-07T23:01:56Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - NPHardEval: Dynamic Benchmark on Reasoning Ability of Large Language
Models via Complexity Classes [32.154637177467684]
NPHardEval is designed to evaluate the reasoning abilities of Large Language Models (LLMs) across a broad spectrum of 900 questions.
It is meticulously chosen to represent a wide range of complexity class below the NP-hard complexity class.
It is designed with a dynamic update mechanism, where the datapoints are refreshed on a monthly basis.
arXiv Detail & Related papers (2023-12-22T18:07:44Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For
Large Language Models [23.344490944210456]
We present 515Bench, a more challenging benchmark dataset for evaluating the problem solving abilities of large language models (LLMs)
We curate challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT-Advanced exam.
Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%.
arXiv Detail & Related papers (2023-05-24T11:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.