MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs
- URL: http://arxiv.org/abs/2507.19525v1
- Date: Sun, 20 Jul 2025 05:46:32 GMT
- Title: MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs
- Authors: Chenchen Zhao, Zhengyuan Shi, Xiangyu Wen, Chengjie Liu, Yi Liu, Yunhao Zhou, Yuxiang Zhao, Hefei Feng, Yinan Zhu, Gwok-Waa Wan, Xin Cheng, Weiyu Chen, Yongqi Fu, Chujie Chen, Chenhao Xue, Guangyu Sun, Ying Wang, Yibo Lin, Jun Yang, Ning Xu, Xi Wang, Qiang Xu,
- Abstract summary: multimodal large language models (MLLMs) present promising opportunities for automation and enhancement in Electronic Design Automation (EDA)<n>We introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance across diverse EDA tasks.<n> MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages.
- Score: 25.945493464645548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.
Related papers
- AMSbench: A Comprehensive Benchmark for Evaluating MLLM Capabilities in AMS Circuits [11.372367666471442]
Automated Analog/Mixed-Signal (AMS) circuit design has remained a longstanding challenge due to its difficulty and complexity.<n>Recent advances in Multi-modal Large Language Models (MLLMs) offer promising potential for supporting AMS circuit analysis and design.<n>We introduce AMSbench, a benchmark suite designed to evaluate MLLM performance across critical tasks including circuit schematic perception, circuit analysis, and circuit design.
arXiv Detail & Related papers (2025-05-30T02:17:45Z) - MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision [76.42361936804313]
We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design.<n> MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance.
arXiv Detail & Related papers (2025-05-21T00:56:09Z) - LLM-based AI Agent for Sizing of Analog and Mixed Signal Circuit [2.979579757819132]
Large Language Models (LLMs) have demonstrated significant potential across various fields.<n>In this work, we propose an LLM-based AI agent for AMS circuit design to assist in the sizing process.
arXiv Detail & Related papers (2025-04-14T22:18:16Z) - AMSnet-KG: A Netlist Dataset for LLM-based AMS Circuit Auto-Design Using Knowledge Graph RAG [15.61553255884534]
Large language models (LLMs) have emerged as powerful tools for Electronic Design Automation (EDA) applications.
This paper introduces AMSnet-KG, a dataset encompassing various AMS circuit schematics and netlists.
We propose an automated AMS circuit generation framework that utilizes the comprehensive knowledge embedded in LLMs.
arXiv Detail & Related papers (2024-11-07T02:49:53Z) - EEE-Bench: A Comprehensive Multimodal Electrical And Electronics Engineering Benchmark [10.265704144939503]
Large language models (LLMs) and large multimodal models (LMMs) have demonstrated promising skills in various domains including science and mathematics.<n>We propose EEE-Bench, a multimodal benchmark aimed at assessing LMMs' capabilities in solving practical engineering tasks.<n>Our benchmark consists of 2860 carefully curated problems spanning 10 essential such as analog circuits, control systems, etc.
arXiv Detail & Related papers (2024-11-03T09:17:56Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability.<n>Through an extensive evaluation of nine popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)<n>MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.<n>It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
We present InsCoQA, a novel benchmark for evaluating large language models (LLMs) in the context of conversational question answering (CQA)
Sourced from extensive, encyclopedia-style instructional content, InsCoQA assesses models on their ability to retrieve, interpret, and accurately summarize procedural guidance from multiple documents.
We also propose InsEval, an LLM-assisted evaluator that measures the integrity and accuracy of generated responses and procedural instructions.
arXiv Detail & Related papers (2024-10-01T09:10:00Z) - MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning [50.45558735526665]
We provide an in-depth and comprehensive evaluation of the performance of MFMs on embodied task planning.
We propose a new benchmark, named MFE-ETP, characterized its complex and variable task scenarios.
Using the benchmark and evaluation platform, we evaluated several state-of-the-art MFMs and found that they significantly lag behind human-level performance.
arXiv Detail & Related papers (2024-07-06T11:07:18Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - DesignQA: A Multimodal Benchmark for Evaluating Large Language Models' Understanding of Engineering Documentation [3.2169312784098705]
This research introduces DesignQA, a novel benchmark aimed at evaluating the proficiency of multimodal large language models (MLLMs) in comprehending and applying engineering requirements in technical documentation.
DesignQA uniquely combines multimodal data-including textual design requirements, CAD images, and engineering drawings-derived from the Formula SAE student competition.
arXiv Detail & Related papers (2024-04-11T16:59:54Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - EDALearn: A Comprehensive RTL-to-Signoff EDA Benchmark for Democratized and Reproducible ML for EDA Research [7.754108359835169]
We introduce EDALearn, the first holistic, open-source benchmark suite specifically for Machine Learning tasks in EDA.<n>This benchmark suite presents an end-to-end flow from synthesis to physical implementation, enriching data collection across various stages.<n>Our contributions aim to encourage further advances in the ML-EDA domain.
arXiv Detail & Related papers (2023-12-04T06:51:46Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [153.37868034779385]
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks.<n>Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes.
arXiv Detail & Related papers (2023-08-04T17:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.