Optimizing Likelihoods via Mutual Information: Bridging Simulation-Based Inference and Bayesian Optimal Experimental Design
- URL: http://arxiv.org/abs/2502.08004v1
- Date: Tue, 11 Feb 2025 22:58:18 GMT
- Title: Optimizing Likelihoods via Mutual Information: Bridging Simulation-Based Inference and Bayesian Optimal Experimental Design
- Authors: Vincent D. Zaballa, Elliot E. Hui,
- Abstract summary: gradient-based BOED methods have been proposed as an alternative to Bayesian optimization and other experimental designs.
We show a link via mutual information bounds between SBI and gradient-based variational inference methods that permits BOED to be used in SBI applications as SBI-BOED.
We compare this approach on SBI-based models in real-world simulators in epidemiology and biology, showing notable improvements in inference.
- Score: 0.0
- License:
- Abstract: Simulation-based inference (SBI) is a method to perform inference on a variety of complex scientific models with challenging inference (inverse) problems. Bayesian Optimal Experimental Design (BOED) aims to efficiently use experimental resources to make better inferences. Various stochastic gradient-based BOED methods have been proposed as an alternative to Bayesian optimization and other experimental design heuristics to maximize information gain from an experiment. We demonstrate a link via mutual information bounds between SBI and stochastic gradient-based variational inference methods that permits BOED to be used in SBI applications as SBI-BOED. This link allows simultaneous optimization of experimental designs and optimization of amortized inference functions. We evaluate the pitfalls of naive design optimization using this method in a standard SBI task and demonstrate the utility of a well-chosen design distribution in BOED. We compare this approach on SBI-based models in real-world simulators in epidemiology and biology, showing notable improvements in inference.
Related papers
- Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
We focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization.
We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons.
Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models.
arXiv Detail & Related papers (2024-03-20T00:41:12Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Stochastic Gradient Bayesian Optimal Experimental Designs for
Simulation-based Inference [0.0]
We establish a crucial connection between ratio-based SBI inference algorithms and gradient-based variational inference by leveraging mutual information bounds.
This connection allows us to extend the simultaneous optimization of experimental designs and amortized inference functions.
arXiv Detail & Related papers (2023-06-27T18:15:41Z) - Variational Sequential Optimal Experimental Design using Reinforcement Learning [0.0]
vsOED employs a one-point reward formulation with variational posterior approximations, providing a provable lower bound to the expected information gain.
We demonstrate vsOED across various engineering and science applications, illustrating its superior sample efficiency compared to existing sequential experimental design algorithms.
arXiv Detail & Related papers (2023-06-17T21:47:19Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - CO-BED: Information-Theoretic Contextual Optimization via Bayesian
Experimental Design [31.247108087199095]
CO-BED is a model-agnostic framework for designing contextual experiments using information-theoretic principles.
As a result, CO-BED provides a general and automated solution to a wide range of contextual optimization problems.
arXiv Detail & Related papers (2023-02-27T18:14:13Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
This work proposes easy to interpret validation diagnostics for multi-dimensional conditional (posterior) density estimators based on NF.
It also offers theoretical guarantees based on results of local consistency.
This work should help the design of better specified models or drive the development of novel SBI-algorithms.
arXiv Detail & Related papers (2022-11-17T15:48:06Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Bayesian Optimal Experimental Design for Simulator Models of Cognition [14.059933880568908]
We combine recent advances in BOED and approximate inference for intractable models to find optimal experimental designs.
Our simulation experiments on multi-armed bandit tasks show that our method results in improved model discrimination and parameter estimation.
arXiv Detail & Related papers (2021-10-29T09:04:01Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.