ID-Cloak: Crafting Identity-Specific Cloaks Against Personalized Text-to-Image Generation
- URL: http://arxiv.org/abs/2502.08097v1
- Date: Wed, 12 Feb 2025 03:52:36 GMT
- Title: ID-Cloak: Crafting Identity-Specific Cloaks Against Personalized Text-to-Image Generation
- Authors: Qianrui Teng, Xing Cui, Xuannan Liu, Peipei Li, Zekun Li, Huaibo Huang, Ran He,
- Abstract summary: We investigate the creation of identity-specific cloaks that safeguard all images belong to a specific identity.
We craft identity-specific cloaks with the proposed novel objective that encourages the cloak to guide the model away from its normal output.
Our method, along with the proposed identity-specific cloak setting, marks a notable advance in realistic privacy protection.
- Score: 54.14901999875917
- License:
- Abstract: Personalized text-to-image models allow users to generate images of new concepts from several reference photos, thereby leading to critical concerns regarding civil privacy. Although several anti-personalization techniques have been developed, these methods typically assume that defenders can afford to design a privacy cloak corresponding to each specific image. However, due to extensive personal images shared online, image-specific methods are limited by real-world practical applications. To address this issue, we are the first to investigate the creation of identity-specific cloaks (ID-Cloak) that safeguard all images belong to a specific identity. Specifically, we first model an identity subspace that preserves personal commonalities and learns diverse contexts to capture the image distribution to be protected. Then, we craft identity-specific cloaks with the proposed novel objective that encourages the cloak to guide the model away from its normal output within the subspace. Extensive experiments show that the generated universal cloak can effectively protect the images. We believe our method, along with the proposed identity-specific cloak setting, marks a notable advance in realistic privacy protection.
Related papers
- PrivacyGAN: robust generative image privacy [0.0]
We introduce a novel approach, PrivacyGAN, to safeguard privacy while maintaining image usability.
Drawing inspiration from Fawkes, our method entails shifting the original image within the embedding space towards a decoy image.
We demonstrate that our approach is effective even in unknown embedding transfer scenarios.
arXiv Detail & Related papers (2023-10-19T08:56:09Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - Differentially Private Imaging via Latent Space Manipulation [5.446368808660037]
We present a novel approach for image obfuscation by manipulating latent spaces of an unconditionally trained generative model.
This is the first approach to image privacy that satisfies $varepsilon$-differential privacy emphfor the person.
arXiv Detail & Related papers (2021-03-08T17:32:08Z) - Privacy-Preserving Image Features via Adversarial Affine Subspace
Embeddings [72.68801373979943]
Many computer vision systems require users to upload image features to the cloud for processing and storage.
We propose a new privacy-preserving feature representation.
Compared to the original features, our approach makes it significantly more difficult for an adversary to recover private information.
arXiv Detail & Related papers (2020-06-11T17:29:48Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.