論文の概要: PoGDiff: Product-of-Gaussians Diffusion Models for Imbalanced Text-to-Image Generation
- arxiv url: http://arxiv.org/abs/2502.08106v1
- Date: Wed, 12 Feb 2025 04:07:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:51:15.315177
- Title: PoGDiff: Product-of-Gaussians Diffusion Models for Imbalanced Text-to-Image Generation
- Title(参考訳): PoGDiff:不均衡テキスト・画像生成のためのガウス拡散モデル
- Authors: Ziyan Wang, Sizhe Wei, Xiaoming Huo, Hao Wang,
- Abstract要約: 本稿では,この課題に対処するため,PoGDiffと呼ばれる汎用的な微調整手法を提案する。
実世界のデータセットを用いた実験により,拡散モデルにおける不均衡問題に効果的に対処できることが示されている。
- 参考スコア(独自算出の注目度): 13.07145194221385
- License:
- Abstract: Diffusion models have made significant advancements in recent years. However, their performance often deteriorates when trained or fine-tuned on imbalanced datasets. This degradation is largely due to the disproportionate representation of majority and minority data in image-text pairs. In this paper, we propose a general fine-tuning approach, dubbed PoGDiff, to address this challenge. Rather than directly minimizing the KL divergence between the predicted and ground-truth distributions, PoGDiff replaces the ground-truth distribution with a Product of Gaussians (PoG), which is constructed by combining the original ground-truth targets with the predicted distribution conditioned on a neighboring text embedding. Experiments on real-world datasets demonstrate that our method effectively addresses the imbalance problem in diffusion models, improving both generation accuracy and quality.
- Abstract(参考訳): 拡散モデルは近年大きな進歩を遂げている。
しかしながら、不均衡なデータセットでトレーニングや微調整を行うと、パフォーマンスは劣化することが多い。
この劣化は、画像とテキストのペアにおける多数派と少数派のデータの不均等な表現が原因である。
本稿では,この課題に対処するため,PoGDiffと呼ばれる汎用的な微調整手法を提案する。
PoGDiffはKLの分布の予測と接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地/接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-接地-を最小化する。
実世界のデータセットを用いた実験により,拡散モデルにおける不均衡問題に効果的に対処し,生成精度と品質を両立することを示した。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - Fair GANs through model rebalancing for extremely imbalanced class
distributions [5.463417677777276]
本稿では,既存のバイアス付きGANからGAN(unbiased generative adversarial Network)を構築するためのアプローチを提案する。
Flickr Faces High Quality (FFHQ) データセットを用いて、人種的公平性をトレーニングしながら、StyleGAN2モデルの結果を示す。
また,不均衡なCIFAR10データセットに適用することで,我々のアプローチをさらに検証する。
論文 参考訳(メタデータ) (2023-08-16T19:20:06Z) - Class-Balancing Diffusion Models [57.38599989220613]
クラスバランシング拡散モデル(CBDM)は、分散調整正規化器をソリューションとして訓練する。
提案手法は,CIFAR100/CIFAR100LTデータセットで生成結果をベンチマークし,下流認識タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-30T20:00:14Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
ニューラルネットワーク生成の標準パラダイムは、最適化方法として最大推定(MLE)を採用する。
言語生成に適用するための実践的境界を開発する。
本稿では,TVD推定のトレードオフのバランスをとるためのTaiLr の目標について紹介する。
論文 参考訳(メタデータ) (2023-02-26T16:32:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。