PoGDiff: Product-of-Gaussians Diffusion Models for Imbalanced Text-to-Image Generation
- URL: http://arxiv.org/abs/2502.08106v2
- Date: Wed, 19 Feb 2025 16:18:04 GMT
- Title: PoGDiff: Product-of-Gaussians Diffusion Models for Imbalanced Text-to-Image Generation
- Authors: Ziyan Wang, Sizhe Wei, Xiaoming Huo, Hao Wang,
- Abstract summary: We propose a general fine-tuning approach, dubbed PoGDiff, to address this challenge.<n>Experiments on real-world datasets demonstrate that our method effectively addresses the imbalance problem in diffusion models.
- Score: 13.07145194221385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have made significant advancements in recent years. However, their performance often deteriorates when trained or fine-tuned on imbalanced datasets. This degradation is largely due to the disproportionate representation of majority and minority data in image-text pairs. In this paper, we propose a general fine-tuning approach, dubbed PoGDiff, to address this challenge. Rather than directly minimizing the KL divergence between the predicted and ground-truth distributions, PoGDiff replaces the ground-truth distribution with a Product of Gaussians (PoG), which is constructed by combining the original ground-truth targets with the predicted distribution conditioned on a neighboring text embedding. Experiments on real-world datasets demonstrate that our method effectively addresses the imbalance problem in diffusion models, improving both generation accuracy and quality.
Related papers
- Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models [22.39558434131574]
Existing data attribution methods for diffusion models typically quantify the contribution of a training sample.
We argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss.
We propose Diffusion Attribution Score (textitDAS) to measure the direct comparison between predicted distributions with an attribution score.
arXiv Detail & Related papers (2024-10-24T10:58:17Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
We propose score entropy as a novel loss that naturally extends score matching to discrete spaces.
We test our Score Entropy Discrete Diffusion models on standard language modeling tasks.
arXiv Detail & Related papers (2023-10-25T17:59:12Z) - Fair GANs through model rebalancing for extremely imbalanced class
distributions [5.463417677777276]
We present an approach to construct an unbiased generative adversarial network (GAN) from an existing biased GAN.
We show results for the StyleGAN2 models while training on the Flickr Faces High Quality (FFHQ) dataset for racial fairness.
We further validate our approach by applying it to an imbalanced CIFAR10 dataset which is also twice as large.
arXiv Detail & Related papers (2023-08-16T19:20:06Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.