Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance
- URL: http://arxiv.org/abs/2502.08127v2
- Date: Fri, 28 Mar 2025 08:33:36 GMT
- Title: Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance
- Authors: Lingfei Qian, Weipeng Zhou, Yan Wang, Xueqing Peng, Han Yi, Jimin Huang, Qianqian Xie, Jianyun Nie,
- Abstract summary: Large language models (LLMs) have shown strong general reasoning capabilities, but their effectiveness in financial reasoning remains underexplored.<n>We evaluate 24 state-of-the-art general and reasoning-focused LLMs across four complex financial reasoning tasks.<n>We propose two domain-adapted models, Fino1-8B and FinoB, trained with chain-of-thought (CoT) fine-tuning and reinforcement learning.
- Score: 32.516564836540745
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While large language models (LLMs) have shown strong general reasoning capabilities, their effectiveness in financial reasoning, which is crucial for real-world financial applications remains underexplored. In this study, we conduct a comprehensive evaluation of 24 state-of-the-art general and reasoning-focused LLMs across four complex financial reasoning tasks involving financial text, tabular data, and equations. We assess key capabilities such as numerical reasoning, tabular interpretation, financial terminology comprehension, long-context understanding, and equation-based problem solving. Our analysis reveals that while data quality and pretraining contribute to performance, general techniques like chain-of-thought (CoT) fine-tuning offer limited gains in financial tasks. To address this, we propose two domain-adapted models, Fino1-8B and Fino1-14B, trained with CoT fine-tuning and reinforcement learning using domain-specific reasoning paths. Our models are trained on a carefully curated dataset integrating high-quality examples from diverse sources, covering financial reports, tables, equations, and structured XBRL texts. Despite limited training data, they achieve an 7-9% performance improvement, outperforming several advanced LLMs, including GPT-o1, GPT-o3-mini, GPT-4.5, and comparable with DeepSeek models (V3 and R1), demonstrating strong practical value in resource, constrained scenarios. Our findings highlight the need for domain-specific adaptations in financial reasoning, and we release all datasets, models, and code for future research.
Related papers
- FinMTEB: Finance Massive Text Embedding Benchmark [18.990655668481075]
We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a specialized counterpart to MTEB designed for the financial domain.
FinMTEB comprises 64 financial domain-specific embedding datasets across 7 tasks.
We show three key findings: (1) performance on general-purpose benchmarks shows limited correlation with financial domain tasks; (2) domain-adapted models consistently outperform their general-purpose counterparts; and (3) surprisingly, a simple Bag-of-Words approach outperforms sophisticated dense embeddings in financial Semantic Textual Similarity tasks.
arXiv Detail & Related papers (2025-02-16T04:23:52Z) - Demystifying Domain-adaptive Post-training for Financial LLMs [79.581577578952]
FINDAP is a systematic and fine-grained investigation into domain adaptive post-training of large language models (LLMs)<n>Our approach consists of four key components: FinCap, FinRec, FinTrain and FinEval.<n>The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks.
arXiv Detail & Related papers (2025-01-09T04:26:15Z) - A Comparative Analysis of Instruction Fine-Tuning LLMs for Financial Text Classification [0.8192907805418583]
Large Language Models (LLMs) have demonstrated impressive capabilities across diverse Natural Language Processing (NLP) tasks.
This study investigates the efficacy of instruction fine-tuning to enhance their performance in financial text classification tasks.
arXiv Detail & Related papers (2024-11-04T18:06:36Z) - Large Language Models for Financial Aid in Financial Time-series Forecasting [0.4218593777811082]
Time series forecasting in financial aid is difficult due to limited historical datasets and high dimensional financial information.
We use state-of-the-art time series models including pre-trained LLMs (GPT-2 as the backbone), transformers, and linear models to demonstrate their ability to outperform traditional approaches.
arXiv Detail & Related papers (2024-10-24T12:41:47Z) - Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [88.96861155804935]
We introduce textitOpen-FinLLMs, the first open-source multimodal financial LLMs.
FinLLaMA is pre-trained on a comprehensive 52-billion-token corpus; FinLLaMA-Instruct, fine-tuned with 573K financial instructions; and FinLLaVA, enhanced with 1.43M multimodal tuning pairs.
We evaluate Open-FinLLMs across 14 financial tasks, 30 datasets, and 4 multimodal tasks in zero-shot, few-shot, and supervised fine-tuning settings.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry.
We propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM.
SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations.
arXiv Detail & Related papers (2024-08-05T08:24:24Z) - CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications [10.225210627594894]
This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks.
Financial classification, financial text summarization, and single stock trading are investigated.
Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
arXiv Detail & Related papers (2024-07-02T05:04:13Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
This paper introduces a distinctive approach anchored in the Instruction Tuning paradigm for open-source large language models.
We capitalize on the interoperability of open-source models, ensuring a seamless and transparent integration.
The paper presents a benchmarking scheme designed for end-to-end training and testing, employing a cost-effective progression.
arXiv Detail & Related papers (2023-10-07T12:52:58Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - Are ChatGPT and GPT-4 General-Purpose Solvers for Financial Text
Analytics? A Study on Several Typical Tasks [36.84636748560657]
Large language models such as ChatGPT and GPT-4 have shown exceptional capabilities of generalist models.
How effective are such models in the financial domain?
arXiv Detail & Related papers (2023-05-10T03:13:54Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
We focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents.
We propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts.
The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge.
arXiv Detail & Related papers (2021-09-01T00:08:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.