論文の概要: Vertical Federated Learning in Practice: The Good, the Bad, and the Ugly
- arxiv url: http://arxiv.org/abs/2502.08160v1
- Date: Wed, 12 Feb 2025 07:03:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:49.108610
- Title: Vertical Federated Learning in Practice: The Good, the Bad, and the Ugly
- Title(参考訳): 実践における垂直的フェデレーション学習 : 善、悪、そして機敏さ
- Authors: Zhaomin Wu, Zhen Qin, Junyi Hou, Haodong Zhao, Qinbin Li, Bingsheng He, Lixin Fan,
- Abstract要約: 本稿では,VFL(Vertical Federated Learning)アプリケーションにおける実世界のデータ分布を分析した。
本稿では,実際のVFLデータ分布に基づくVFLアルゴリズムの新たなデータ指向分類法を提案する。
これらの観測に基づいて、現在のVFL研究と実世界の応用とのギャップを埋めるための重要な研究の方向性を概説する。
- 参考スコア(独自算出の注目度): 42.31182713177944
- License:
- Abstract: Vertical Federated Learning (VFL) is a privacy-preserving collaborative learning paradigm that enables multiple parties with distinct feature sets to jointly train machine learning models without sharing their raw data. Despite its potential to facilitate cross-organizational collaborations, the deployment of VFL systems in real-world applications remains limited. To investigate the gap between existing VFL research and practical deployment, this survey analyzes the real-world data distributions in potential VFL applications and identifies four key findings that highlight this gap. We propose a novel data-oriented taxonomy of VFL algorithms based on real VFL data distributions. Our comprehensive review of existing VFL algorithms reveals that some common practical VFL scenarios have few or no viable solutions. Based on these observations, we outline key research directions aimed at bridging the gap between current VFL research and real-world applications.
- Abstract(参考訳): Vertical Federated Learning(VFL)は、プライバシを保存する協調学習パラダイムであり、異なる機能セットを持つ複数のパーティが、生データを共有することなく、機械学習モデルを共同でトレーニングすることができる。
組織間のコラボレーションを促進する可能性にもかかわらず、現実のアプリケーションにおけるVFLシステムの展開は限定的である。
既存のVFL研究と実践的展開のギャップを調査するため,本調査では,潜在的なVFLアプリケーションにおける実世界のデータ分布を分析し,このギャップを浮き彫りにする4つの重要な知見を明らかにした。
本稿では,実際のVFLデータ分布に基づくVFLアルゴリズムの新たなデータ指向分類法を提案する。
既存のVFLアルゴリズムの包括的レビューにより、いくつかの実用的なVFLシナリオには、実現可能なソリューションがほとんど、あるいは全く存在しないことが判明した。
これらの観測に基づいて、現在のVFL研究と実世界の応用とのギャップを埋めるための重要な研究の方向性を概説する。
関連論文リスト
- UIFV: Data Reconstruction Attack in Vertical Federated Learning [5.404398887781436]
Vertical Federated Learning (VFL)は、参加者が生のプライベートデータを共有することなく、協調的な機械学習を促進する。
近年の研究では、学習プロセス中にデータ漏洩によって、敵が機密性を再構築する可能性のあるプライバシーリスクが明らかにされている。
我々の研究は、実用的なVFLアプリケーションに真の脅威をもたらす、VFLシステム内の深刻なプライバシー上の脆弱性を露呈する。
論文 参考訳(メタデータ) (2024-06-18T13:18:52Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2024-05-25T16:05:06Z) - VFLAIR: A Research Library and Benchmark for Vertical Federated Learning [14.878602173713686]
垂直学習(VFL)は、同じグループのユーザの異なる特徴を持つ参加者が、生のデータやモデルパラメータを公開せずに協調トレーニングを達成できるようにする、協調トレーニングパラダイムとして登場した。
近年、VFLは研究の可能性や現実世界の応用に大きな注目を集めているが、様々な種類のデータ推論やバックドア攻撃の防衛など、依然として重大な課題に直面している。
我々は、様々なモデル、データセット、プロトコルによるVFLトレーニングと、攻撃と防御戦略の総合的な評価のための標準化されたモジュールをサポートする、フェデレーションで軽量なVFLフレームワークであるVFLAIRを提案する。
論文 参考訳(メタデータ) (2023-10-15T13:18:31Z) - VertiBench: Advancing Feature Distribution Diversity in Vertical
Federated Learning Benchmarks [31.08004805380727]
本稿では,VFLの性能に影響を及ぼす2つの要因について紹介する。
また、画像イメージのVFLシナリオの欠点に対応するために、実際のVFLデータセットも導入する。
論文 参考訳(メタデータ) (2023-07-05T05:55:08Z) - A Survey on Vertical Federated Learning: From a Layered Perspective [21.639062199459925]
本稿では,垂直連合学習(VFL)の現状を階層的視点から検討する。
我々は、VFLのコアコンポーネント、すなわちセキュアな垂直連合機械学習アルゴリズムを分析するために、新しいMOSP木分類法を設計する。
我々の分類学は、機械学習モデル(M)、保護オブジェクト(O)、セキュリティモデル(S)、プライバシ保護プロトコル(P)の4つの側面を考察している。
論文 参考訳(メタデータ) (2023-04-04T14:33:30Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
VFLの実践的な産業的応用を実現するために,Semi-VFL (Vertical Semi-Federated Learning) を提案する。
サンプル空間全体に適用可能な推論効率のよいシングルパーティ学生モデルを構築した。
新しい表現蒸留法は、重なり合うデータと非重なり合うデータの両方について、パーティ間の特徴相関を抽出するように設計されている。
論文 参考訳(メタデータ) (2022-09-30T17:59:27Z) - Low-Latency Cooperative Spectrum Sensing via Truncated Vertical
Federated Learning [51.51440623636274]
データプライバシを損なうことなく、複数のセカンダリユーザ(SU)にまたがる分散機能を活用できる垂直連合学習(VFL)フレームワークを提案する。
学習プロセスの高速化を目的として,T-VFL(Truncated vertical Federated Learning)アルゴリズムを提案する。
T-VFLの収束性能は、数学的解析によって提供され、シミュレーション結果によって正当化される。
論文 参考訳(メタデータ) (2022-08-07T10:39:27Z) - Desirable Companion for Vertical Federated Learning: New Zeroth-Order
Gradient Based Algorithm [140.25480610981504]
VFLアルゴリズムを評価するための指標の完全なリストには、モデル適用性、プライバシ、通信、計算効率が含まれるべきである。
ブラックボックスのスケーラビリティを備えた新しいVFLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-19T13:55:47Z) - Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks [81.83990083088345]
我々は,無線ネットワークにおける階層型フェデレーション学習(HFL)アルゴリズムを特徴付ける理論モデルを開発した。
分析の結果,HFLの学習性能は,ハイモービル利用者の学習能力が著しく低下していることが判明した。
これらの問題を回避するため,我々はMACFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-20T10:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。