論文の概要: CoDynTrust: Robust Asynchronous Collaborative Perception via Dynamic Feature Trust Modulus
- arxiv url: http://arxiv.org/abs/2502.08169v1
- Date: Wed, 12 Feb 2025 07:23:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:15.356443
- Title: CoDynTrust: Robust Asynchronous Collaborative Perception via Dynamic Feature Trust Modulus
- Title(参考訳): CoDynTrust:動的特徴信頼率によるロバスト非同期協調知覚
- Authors: Yunjiang Xu, Lingzhi Li, Jin Wang, Benyuan Yang, Zhiwen Wu, Xinhong Chen, Jianping Wang,
- Abstract要約: 複数のエージェントからの情報を融合した協調的知覚は、知覚範囲を拡張して性能を向上させることができる。
リアルタイム環境における時間的非同期性は、通信遅延、クロックのミスアライメント、あるいは構成の違いのサンプリングによって引き起こされ、情報ミスマッチを引き起こす。
本稿では,時間的非同期性に起因する情報ミスマッチに頑健な,不確実性に符号化された非同期核融合認識フレームワークであるCoDynTrustを提案する。
- 参考スコア(独自算出の注目度): 9.552300496606644
- License:
- Abstract: Collaborative perception, fusing information from multiple agents, can extend perception range so as to improve perception performance. However, temporal asynchrony in real-world environments, caused by communication delays, clock misalignment, or sampling configuration differences, can lead to information mismatches. If this is not well handled, then the collaborative performance is patchy, and what's worse safety accidents may occur. To tackle this challenge, we propose CoDynTrust, an uncertainty-encoded asynchronous fusion perception framework that is robust to the information mismatches caused by temporal asynchrony. CoDynTrust generates dynamic feature trust modulus (DFTM) for each region of interest by modeling aleatoric and epistemic uncertainty as well as selectively suppressing or retaining single-vehicle features, thereby mitigating information mismatches. We then design a multi-scale fusion module to handle multi-scale feature maps processed by DFTM. Compared to existing works that also consider asynchronous collaborative perception, CoDynTrust combats various low-quality information in temporally asynchronous scenarios and allows uncertainty to be propagated to downstream tasks such as planning and control. Experimental results demonstrate that CoDynTrust significantly reduces performance degradation caused by temporal asynchrony across multiple datasets, achieving state-of-the-art detection performance even with temporal asynchrony. The code is available at https://github.com/CrazyShout/CoDynTrust.
- Abstract(参考訳): 複数のエージェントからの情報を融合した協調的知覚は、知覚能力を向上させるために知覚範囲を拡張することができる。
しかし、リアルタイム環境における時間的非同期性は、通信遅延、クロックのずれ、あるいは構成の違いのサンプリングによって引き起こされ、情報ミスマッチを引き起こす可能性がある。
これがうまく扱えない場合、協調的なパフォーマンスは不適切で、さらに悪いことに安全上の事故が発生します。
この課題に対処するために,時間的非同期性に起因する情報ミスマッチに頑健な,不確実性に符号化された非同期核融合認識フレームワークであるCoDynTrustを提案する。
CoDynTrustは、単車種の特徴を選択的に抑制または保持し、情報ミスマッチを緩和すると共に、動脈およびてんかんの不確実性をモデル化して、各領域の動的特徴信頼率(DFTM)を生成する。
次に、DFTMで処理されたマルチスケール特徴写像を扱うためのマルチスケール融合モジュールを設計する。
CoDynTrustは、非同期の協調認識も考慮している既存の作業と比べ、時間的に非同期なシナリオで様々な低品質の情報と戦っており、計画や制御といった下流のタスクに不確実性が伝播することを可能にしている。
実験により、CoDynTrustは、複数のデータセットにまたがる時間的非同期による性能劣化を著しく低減し、時間的非同期であっても最先端検出性能を達成することを示した。
コードはhttps://github.com/CrazyShout/CoDynTrust.comで公開されている。
関連論文リスト
- MHSA: A Multi-scale Hypergraph Network for Mild Cognitive Impairment Detection via Synchronous and Attentive Fusion [4.526574526136158]
同期核融合によるMCI検出のためのマルチスケールハイパーグラフネットワークを提案する。
本手法では、関心領域のスペクトル領域における位相同期関係を計算するために、位相同期値(PLV)を用いる。
PLV係数は動的に戦略を調整し,時間スペクトル融合行列に基づいて動的ハイパーグラフをモデル化する。
論文 参考訳(メタデータ) (2024-12-11T02:59:57Z) - StreamLTS: Query-based Temporal-Spatial LiDAR Fusion for Cooperative Object Detection [0.552480439325792]
我々は、広く使われているデータセットOPV2VとDairV2Xを適応させる、TA-COOD(Time-Aligned Cooperative Object Detection)を提案する。
実験結果から, 最先端の高密度モデルと比較して, 完全スパースフレームワークの優れた効率性が確認された。
論文 参考訳(メタデータ) (2024-07-04T10:56:10Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented Language Model (RALMs) は、知識集約型タスクにおいて、高い性能と幅広い適用性を示している。
本稿では,非偽文の検出に微細な復号力学を利用する軽量モニタであるSynCheckを提案する。
また、長文検索拡張生成のためのビームサーチによって導かれる忠実度指向の復号アルゴリズムであるFODを導入する。
論文 参考訳(メタデータ) (2024-06-19T16:42:57Z) - Uncertainty-Aware Deep Attention Recurrent Neural Network for
Heterogeneous Time Series Imputation [0.25112747242081457]
欠落は多変量時系列においてユビキタスであり、信頼できる下流分析の障害となる。
本稿では、欠落した値とその関連不確かさを共同で推定するDeep Attention Recurrent Imputation (Imputation)を提案する。
実験の結果,実世界のデータセットを用いた多様な計算タスクにおいて,SOTAを上回っていることがわかった。
論文 参考訳(メタデータ) (2024-01-04T13:21:11Z) - TrustGuard: GNN-based Robust and Explainable Trust Evaluation with
Dynamicity Support [59.41529066449414]
本稿では,信頼度を考慮した信頼度評価モデルであるTrustGuardを提案する。
TrustGuardは、スナップショット入力層、空間集約層、時間集約層、予測層を含む階層アーキテクチャで設計されている。
実験により、TrustGuardは、シングルタイムスロットとマルチタイムスロットの信頼予測に関して、最先端のGNNベースの信頼評価モデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-06-23T07:39:12Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Edge Continual Learning for Dynamic Digital Twins over Wireless Networks [68.65520952712914]
デジタルツイン(DT)は、現実世界とメタバースの間の重要なリンクを構成する。
本稿では,物理的双生児とそれに対応するサイバー双生児の親和性を正確にモデル化する新しいエッジ連続学習フレームワークを提案する。
提案するフレームワークは,破滅的忘れ込みに対して頑健な,高精度かつ同期的なCTモデルを実現する。
論文 参考訳(メタデータ) (2022-04-10T23:25:37Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Slow and Stale Gradients Can Win the Race [39.750046808758526]
同期的に実行される分散Gradient Descent(SGD)は、最も遅いワーカー(ストラグラー)を待つとき、実行時の遅延に悩まされる。
非同期手法はストラグラーを緩和するが、収束誤差に悪影響を及ぼす勾配の安定化を引き起こす。
本稿では,訓練されたモデルにおけるエラーと実際のトレーニング実行時のトレードオフを解析し,非同期手法によって提供される高速化の理論的特徴について述べる。
論文 参考訳(メタデータ) (2020-03-23T23:27:50Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
イベントカメラはバイオインスパイアされたセンサーで、非同期でスパースな「イベント」の形で画素ごとの明るさ変化に反応する。
同期画像のようなイベント表現で訓練されたモデルを、同じ出力を持つ非同期モデルに変換するための一般的なフレームワークを提案する。
理論的および実験的に、これは高容量同期ニューラルネットワークの計算複雑性と遅延を大幅に減少させることを示す。
論文 参考訳(メタデータ) (2020-03-20T08:39:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。