Intention is All You Need: Refining Your Code from Your Intention
- URL: http://arxiv.org/abs/2502.08172v1
- Date: Wed, 12 Feb 2025 07:26:13 GMT
- Title: Intention is All You Need: Refining Your Code from Your Intention
- Authors: Qi Guo, Xiaofei Xie, Shangqing Liu, Ming Hu, Xiaohong Li, Lei Bu,
- Abstract summary: This paper proposes an intention-based code refinement technique that enhances the conventional comment-to-code process.
Our approach consists of two key phases: Intention Extraction and Intention Guided Revision Generation.
Our approach achieves 79% accuracy in intention extraction and up to 66% in code refinement generation.
- Score: 19.827036493004435
- License:
- Abstract: Code refinement aims to enhance existing code by addressing issues, refactoring, and optimizing to improve quality and meet specific requirements. As software projects scale in size and complexity, the traditional iterative exchange between reviewers and developers becomes increasingly burdensome. While recent deep learning techniques have been explored to accelerate this process, their performance remains limited, primarily due to challenges in accurately understanding reviewers' intents. This paper proposes an intention-based code refinement technique that enhances the conventional comment-to-code process by explicitly extracting reviewer intentions from the comments. Our approach consists of two key phases: Intention Extraction and Intention Guided Revision Generation. Intention Extraction categorizes comments using predefined templates, while Intention Guided Revision Generation employs large language models (LLMs) to generate revised code based on these defined intentions. Three categories with eight subcategories are designed for comment transformation, which is followed by a hybrid approach that combines rule-based and LLM-based classifiers for accurate classification. Extensive experiments with five LLMs (GPT4o, GPT3.5, DeepSeekV2, DeepSeek7B, CodeQwen7B) under different prompting settings demonstrate that our approach achieves 79% accuracy in intention extraction and up to 66% in code refinement generation. Our results highlight the potential of our approach in enhancing data quality and improving the efficiency of code refinement.
Related papers
- Harnessing Large Language Models for Curated Code Reviews [2.5944208050492183]
In code review, generating structured and relevant comments is crucial for identifying code issues and facilitating accurate code changes.
Existing code review datasets are often noisy and unrefined, posing limitations to the learning potential of AI models.
We propose a curation pipeline designed to enhance the quality of the largest publicly available code review dataset.
arXiv Detail & Related papers (2025-02-05T18:15:09Z) - Prompting and Fine-tuning Large Language Models for Automated Code Review Comment Generation [5.6001617185032595]
Large language models pretrained on both programming and natural language data tend to perform well in code-oriented tasks.
We fine-tune open-source Large language models (LLM) in parameter-efficient, quantized low-rank fashion on consumer-grade hardware to improve review comment generation.
arXiv Detail & Related papers (2024-11-15T12:01:38Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
We propose CodeDPO, a framework that integrates preference learning into code generation to improve two key code preference factors: code correctness and efficiency.
CodeDPO employs a novel dataset construction method, utilizing a self-generation-and-validation mechanism that simultaneously generates and evaluates code and test cases.
arXiv Detail & Related papers (2024-10-08T01:36:15Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Prompt-based Code Completion via Multi-Retrieval Augmented Generation [15.233727939816388]
ProCC is a code completion framework leveraging prompt engineering and the contextual multi-armed bandits algorithm.
ProCC outperforms state-of-the-art code completion technique by 8.6% on our collected open-source benchmark suite.
ProCC also allows augmenting fine-tuned techniques in a plug-and-play manner, yielding 5.6% improvement over our studied fine-tuned model.
arXiv Detail & Related papers (2024-05-13T07:56:15Z) - Learnable Item Tokenization for Generative Recommendation [78.30417863309061]
We propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), which integrates hierarchical semantics, collaborative signals, and code assignment diversity.
LETTER incorporates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias.
arXiv Detail & Related papers (2024-05-12T15:49:38Z) - Improving the Learning of Code Review Successive Tasks with Cross-Task
Knowledge Distillation [1.0878040851638]
We introduce a novel deep-learning architecture, named DISCOREV, which employs cross-task knowledge distillation to address these tasks simultaneously.
We show that our approach generates better review comments, as measured by the BLEU score, as well as more accurate code refinement according to the CodeBLEU score.
arXiv Detail & Related papers (2024-02-03T07:02:22Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Fixing Large Language Models' Specification Misunderstanding for Better Code Generation [13.494822086550604]
muFiX is a novel prompting technique to improve the code generation performance of large language models (LLMs)
It first exploits test case analysis to obtain specification understanding and enables a self-improvement process.
muFiX further fixes the specification understanding towards the direction reducing the gap between the provided understanding and the actual understanding.
arXiv Detail & Related papers (2023-09-28T02:58:07Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
We show that Contrastive Decoding achieves large out-of-the-box improvements over greedy decoding on a variety of reasoning tasks.
We show that Contrastive Decoding leads LLaMA-65B to outperform LLaMA 2, GPT-3.5 and PaLM 2-L on the HellaSwag commonsense reasoning benchmark.
arXiv Detail & Related papers (2023-09-17T00:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.