Latest Advancements Towards Catastrophic Forgetting under Data Scarcity: A Comprehensive Survey on Few-Shot Class Incremental Learning
- URL: http://arxiv.org/abs/2502.08181v1
- Date: Wed, 12 Feb 2025 07:39:44 GMT
- Title: Latest Advancements Towards Catastrophic Forgetting under Data Scarcity: A Comprehensive Survey on Few-Shot Class Incremental Learning
- Authors: M. Anwar Ma'sum, Mahardhika Pratama, Igor Skrjanc,
- Abstract summary: Data scarcity significantly complicates the continual learning problem.
Recent progress of few-shot class incremental learning methods show insightful knowledge on how to tackle the problem.
Our extensive discussion presents the open challenges, potential solutions, and future directions of FSCIL.
- Score: 13.604908618597944
- License:
- Abstract: Data scarcity significantly complicates the continual learning problem, i.e., how a deep neural network learns in dynamic environments with very few samples. However, the latest progress of few-shot class incremental learning (FSCIL) methods and related studies show insightful knowledge on how to tackle the problem. This paper presents a comprehensive survey on FSCIL that highlights several important aspects i.e. comprehensive and formal objectives of FSCIL approaches, the importance of prototype rectifications, the new learning paradigms based on pre-trained model and language-guided mechanism, the deeper analysis of FSCIL performance metrics and evaluation, and the practical contexts of FSCIL in various areas. Our extensive discussion presents the open challenges, potential solutions, and future directions of FSCIL.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - A Complete Survey on Contemporary Methods, Emerging Paradigms and Hybrid Approaches for Few-Shot Learning [5.8497833718980345]
Few-Shot Learning aims to enable rapid adaptation to novel learning tasks.
Recent trends shaping the field, outstanding challenges, and promising future research directions are discussed.
arXiv Detail & Related papers (2024-02-05T13:55:54Z) - Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects [84.36935309169567]
We present a broad review of recent advances for fine-grained analysis in zero-shot learning (ZSL)
We first provide a taxonomy of existing methods and techniques with a thorough analysis of each category.
Then, we summarize the benchmark, covering publicly available datasets, models, implementations, and some more details as a library.
arXiv Detail & Related papers (2024-01-31T11:51:24Z) - Few-shot Class-incremental Learning for Classification and Object Detection: A Survey [21.00652296768061]
Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML)
This paper aims to provide a comprehensive and systematic review of FSCIL.
arXiv Detail & Related papers (2023-08-13T13:01:21Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
Few-shot class-incremental learning (FSCIL) poses a significant challenge for deep neural networks to learn new tasks.
This paper provides a comprehensive survey on FSCIL.
FSCIL has achieved impressive achievements in various fields of computer vision.
arXiv Detail & Related papers (2023-04-17T10:15:08Z) - LSFSL: Leveraging Shape Information in Few-shot Learning [11.145085584637746]
Few-shot learning techniques seek to learn the underlying patterns in data using fewer samples, analogous to how humans learn from limited experience.
In this limited-data scenario, the challenges associated with deep neural networks, such as shortcut learning and texture bias behaviors, are further exacerbated.
We propose LSFSL, which enforces the model to learn more generalizable features utilizing the implicit prior information present in the data.
arXiv Detail & Related papers (2023-04-13T16:59:22Z) - Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [76.2650734930974]
Semi-supervised learning and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data.
We review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and unsupervised learning (UL) for visual recognition from a unified perspective.
arXiv Detail & Related papers (2022-08-24T04:26:21Z) - A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
Challenges, and Opportunities [5.809416101410813]
Few-shot learning has emerged as an effective learning method and shows great potential.
We extensively investigated 200+ latest papers on FSL published in the past three years.
We propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge.
arXiv Detail & Related papers (2022-05-13T16:24:35Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD) mimics the humans' ability of learning to learn.
FSOD intelligently transfers the learned generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes.
We give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols.
arXiv Detail & Related papers (2022-03-27T04:11:28Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.