論文の概要: GenIAS: Generator for Instantiating Anomalies in time Series
- arxiv url: http://arxiv.org/abs/2502.08262v1
- Date: Wed, 12 Feb 2025 10:10:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:47:42.778250
- Title: GenIAS: Generator for Instantiating Anomalies in time Series
- Title(参考訳): GenIAS: 時系列で異常を実証するためのジェネレータ
- Authors: Zahra Zamanzadeh Darban, Qizhou Wang, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi,
- Abstract要約: 可変オートエンコーダを用いた時系列異常検出(TSAD)のための生成モデルを開発した。
GenIASはTSADタスクのための多種多様な現実的な合成異常を生成するように設計されている。
実験の結果,GenIASは従来型および深部異常検出モデル17より一貫して優れていた。
- 参考スコア(独自算出の注目度): 54.959865643340535
- License:
- Abstract: A recent and promising approach for building time series anomaly detection (TSAD) models is to inject synthetic samples of anomalies within real data sets. The existing injection mechanisms have significant limitations - most of them rely on ad hoc, hand-crafted strategies which fail to capture the natural diversity of anomalous patterns, or are restricted to univariate time series settings. To address these challenges, we design a generative model for TSAD using a variational autoencoder, which is referred to as a Generator for Instantiating Anomalies in Time Series (GenIAS). GenIAS is designed to produce diverse and realistic synthetic anomalies for TSAD tasks. By employing a novel learned perturbation mechanism in the latent space and injecting the perturbed patterns in different segments of time series, GenIAS can generate anomalies with greater diversity and varying scales. Further, guided by a new triplet loss function, which uses a min-max margin and a new variance-scaling approach to further enforce the learning of compact normal patterns, GenIAS ensures that anomalies are distinct from normal samples while remaining realistic. The approach is effective for both univariate and multivariate time series. We demonstrate the diversity and realism of the generated anomalies. Our extensive experiments demonstrate that GenIAS - when integrated into a TSAD task - consistently outperforms seventeen traditional and deep anomaly detection models, thereby highlighting the potential of generative models for time series anomaly generation.
- Abstract(参考訳): 近年, 時系列異常検出 (TSAD) モデルの構築において, 実データ集合内の異常の合成サンプルを注入する手法が提案されている。
既存のインジェクションメカニズムには、大きな制限がある。その多くはアドホックな手作りの戦略に依存しており、異常なパターンの自然な多様性を捉えていないか、あるいは一変量の時系列設定に制限されている。
これらの課題に対処するため,我々は変分オートエンコーダを用いたTSAD生成モデルを設計した。
GenIASはTSADタスクのための多種多様な現実的な合成異常を生成するように設計されている。
学習された摂動機構を潜時空間に導入し、時系列の異なるセグメントに摂動パターンを注入することにより、GenIASはより多様性と様々なスケールで異常を発生させることができる。
さらに、min-maxマージンと新しい分散スケーリングアプローチを用いて、コンパクトな正規パターンの学習をさらに強化する新しい三重項損失関数により、GenIASは、異常が通常のサンプルと現実的のままに異なることを保証している。
このアプローチは単変量時系列と多変量時系列の両方に有効である。
生成した異常の多様性と現実性を示す。
TSADタスクに統合されたGenIASは、17の従来型および深部異常検出モデルより一貫して優れており、時系列異常生成のための生成モデルの可能性を強調している。
関連論文リスト
- AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
時系列異常検出のための周波数領域における多重正規パターン対応異常検出手法を提案する。
i) 統一モデルで多様な正規パターンを扱うのに優れたパターン抽出機構、(ii) 時間領域における短期異常を増幅し周波数領域における異常の再構築を妨げる双対的畳み込み機構、(iii) 周波数領域のスパーシリティと並列性を活用してモデル効率を向上させる。
論文 参考訳(メタデータ) (2023-11-26T03:31:43Z) - ALGAN: Time Series Anomaly Detection with Adjusted-LSTM GAN [0.9065034043031667]
時系列データの異常検出は、製造、医療画像、サイバーセキュリティといった様々な領域で一般的な問題である。
近年,GAN(Generative Adversarial Networks)は時系列データの異常検出に有効であることが示されている。
本稿では,ALGAN(Adjusted-LSTM GAN)と呼ばれる新しいGANモデルを提案する。
論文 参考訳(メタデータ) (2023-08-13T02:17:19Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Time Series Anomaly Detection via Reinforcement Learning-Based Model
Selection [3.1692938090731584]
時系列異常検出は、実世界のシステムの信頼性と効率的な運用において重要である。
本研究では、異常検出モデルのプールがアクセス可能であると仮定し、強化学習を利用して候補モデルを動的に選択することを提案する。
提案手法は,全体の性能において,すべてのベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T22:10:35Z) - Heteroscedastic Temporal Variational Autoencoder For Irregular Time Series [15.380441563675243]
HeTVAE(Heteroscedastic Temporal Variational Autoencoder)と呼ばれる不規則サンプル時系列のための新しいディープラーニングフレームワークを提案する。
HeTVAEは、入力観察間隔に関する情報を符号化する新しい入力層と、入力間隔による不確かさを伝播する時間的VAEアーキテクチャと、変数による出力の不確実性を可能にするヘテロセダスティック出力層とを含む。
提案したアーキテクチャは,近年提案された潜時変動モデルと同様に,時間スパースおよび不規則サンプリングによる変動不確かさを,ベースラインや従来のモデルよりもよく反映できることを示す。
論文 参考訳(メタデータ) (2021-07-23T16:59:21Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。