論文の概要: Word Synchronization Challenge: A Benchmark for Word Association Responses for LLMs
- arxiv url: http://arxiv.org/abs/2502.08312v1
- Date: Wed, 12 Feb 2025 11:30:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:47:51.663322
- Title: Word Synchronization Challenge: A Benchmark for Word Association Responses for LLMs
- Title(参考訳): 単語同期化チャレンジ:LLMにおける単語連想応答のベンチマーク
- Authors: Tanguy Cazalets, Joni Dambre,
- Abstract要約: 本稿では,人-コンピュータインタラクション(HCI)における大規模言語モデル(LLM)を評価するための新しいベンチマークであるWord Synchronization Challengeを紹介する。
このベンチマークでは、動的ゲームライクなフレームワークを使用して、単語アソシエーションを通じて人間の認知プロセスを模倣するLLMの能力をテストする。
- 参考スコア(独自算出の注目度): 4.352318127577628
- License:
- Abstract: This paper introduces the Word Synchronization Challenge, a novel benchmark to evaluate large language models (LLMs) in Human-Computer Interaction (HCI). This benchmark uses a dynamic game-like framework to test LLMs ability to mimic human cognitive processes through word associations. By simulating complex human interactions, it assesses how LLMs interpret and align with human thought patterns during conversational exchanges, which are essential for effective social partnerships in HCI. Initial findings highlight the influence of model sophistication on performance, offering insights into the models capabilities to engage in meaningful social interactions and adapt behaviors in human-like ways. This research advances the understanding of LLMs potential to replicate or diverge from human cognitive functions, paving the way for more nuanced and empathetic human-machine collaborations.
- Abstract(参考訳): 本稿では,人-コンピュータインタラクション(HCI)における大規模言語モデル(LLM)を評価するための新しいベンチマークであるWord Synchronization Challengeを紹介する。
このベンチマークでは、動的ゲームライクなフレームワークを使用して、単語アソシエーションを通じて人間の認知プロセスを模倣するLLMの能力をテストする。
複雑なヒューマンインタラクションをシミュレートすることで、HCIにおける効果的な社会的パートナーシップに不可欠な会話交換において、LLMが人間の思考パターンをどのように解釈し、調整するかを評価する。
最初の発見は、モデル高度化がパフォーマンスに与える影響を強調し、人間のような方法で意味のある社会的相互作用に関わり、行動に適応するモデル能力に関する洞察を提供する。
この研究は、LLMが人間の認知機能から複製または分岐する可能性を理解し、よりニュアンスで共感的な人間と機械のコラボレーションへの道を開く。
関連論文リスト
- A Survey on Human-Centric LLMs [11.49752599240738]
大型言語モデル(LLM)は人間の認知と行動をシミュレートすることができる。
この調査は個々のタスクと集合タスクの両方のパフォーマンスに焦点を当てている。
論文 参考訳(メタデータ) (2024-11-20T12:34:44Z) - Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
大規模言語モデル(LLM)はプログラミングプラクティスを変革し、コード生成活動に重要な機能を提供する。
本稿では,LLMがプログラミングタスクに与える影響を評価するユーザスタディから洞察を得た上で,プログラミングタスクにおけるそれらの使用に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-01T19:34:46Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Harnessing the Power of Large Language Models for Empathetic Response Generation: Empirical Investigations and Improvements [28.630542719519855]
本研究では,大規模言語モデル(LLM)の共感応答生成における性能について実験的に検討する。
大規模な実験により, LLMは提案手法の利点を大いに生かし, 自動評価と人的評価の両方で最先端の性能を達成できることが示されている。
論文 参考訳(メタデータ) (2023-10-08T12:21:24Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。