Modification and Generated-Text Detection: Achieving Dual Detection Capabilities for the Outputs of LLM by Watermark
- URL: http://arxiv.org/abs/2502.08332v1
- Date: Wed, 12 Feb 2025 11:56:40 GMT
- Title: Modification and Generated-Text Detection: Achieving Dual Detection Capabilities for the Outputs of LLM by Watermark
- Authors: Yuhang Cai, Yaofei Wang, Donghui Hu, Gu Chen,
- Abstract summary: One practical solution is to embed a watermark in the text, allowing ownership verification through watermark extraction.
Existing methods primarily focus on defending against modification attacks, often neglecting other spoofing attacks.
We propose a technique to detect modifications in text for unbiased watermark which is sensitive to modification.
- Score: 5.655861981730719
- License:
- Abstract: The development of large language models (LLMs) has raised concerns about potential misuse. One practical solution is to embed a watermark in the text, allowing ownership verification through watermark extraction. Existing methods primarily focus on defending against modification attacks, often neglecting other spoofing attacks. For example, attackers can alter the watermarked text to produce harmful content without compromising the presence of the watermark, which could lead to false attribution of this malicious content to the LLM. This situation poses a serious threat to the LLMs service providers and highlights the significance of achieving modification detection and generated-text detection simultaneously. Therefore, we propose a technique to detect modifications in text for unbiased watermark which is sensitive to modification. We introduce a new metric called ``discarded tokens", which measures the number of tokens not included in watermark detection. When a modification occurs, this metric changes and can serve as evidence of the modification. Additionally, we improve the watermark detection process and introduce a novel method for unbiased watermark. Our experiments demonstrate that we can achieve effective dual detection capabilities: modification detection and generated-text detection by watermark.
Related papers
- Revisiting the Robustness of Watermarking to Paraphrasing Attacks [10.68370011459729]
Many recent watermarking techniques modify the output probabilities of LMs to embed a signal in the generated output that can later be detected.
We show that with access to only a limited number of generations from a black-box watermarked model, we can drastically increase the effectiveness of paraphrasing attacks to evade watermark detection.
arXiv Detail & Related papers (2024-11-08T02:22:30Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
This work is the first to investigate the imperceptibility of watermarked Large Language Models (LLMs)
We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts.
Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts.
arXiv Detail & Related papers (2024-10-04T06:01:27Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Is The Watermarking Of LLM-Generated Code Robust? [5.48277165801539]
We show that watermarking techniques are significantly more fragile in code-based contexts.
Specifically, we show that simple semantic-preserving transformations, such as variable renaming and dead code insertion, can effectively erase watermarks.
arXiv Detail & Related papers (2024-03-24T21:41:29Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
We ask whether language models can directly learn to generate watermarked text.
We propose watermark distillation, which trains a student model to behave like a teacher model.
We find that models can learn to generate watermarked text with high detectability.
arXiv Detail & Related papers (2023-12-07T17:41:44Z) - I Know You Did Not Write That! A Sampling Based Watermarking Method for
Identifying Machine Generated Text [0.0]
We propose a new watermarking method to detect machine-generated texts.
Our method embeds a unique pattern within the generated text.
We show how watermarking affects textual quality and compare our proposed method with a state-of-the-art watermarking method.
arXiv Detail & Related papers (2023-11-29T20:04:57Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
Current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection.
We propose an unforgeable publicly verifiable watermark algorithm named UPV that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages.
arXiv Detail & Related papers (2023-07-30T13:43:27Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z) - Who Wrote this Code? Watermarking for Code Generation [53.24895162874416]
We propose Selective WatErmarking via Entropy Thresholding (SWEET) to detect machine-generated text.
Our experiments show that SWEET significantly improves code quality preservation while outperforming all baselines.
arXiv Detail & Related papers (2023-05-24T11:49:52Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.