Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality
- URL: http://arxiv.org/abs/2407.13803v1
- Date: Wed, 17 Jul 2024 18:52:12 GMT
- Title: Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality
- Authors: Duy C. Hoang, Hung T. Q. Le, Rui Chu, Ping Li, Weijie Zhao, Yingjie Lao, Khoa D. Doan,
- Abstract summary: We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
- Score: 27.592486717044455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread adoption of Large Language Models (LLMs), concerns about potential misuse have emerged. To this end, watermarking has been adapted to LLM, enabling a simple and effective way to detect and monitor generated text. However, while the existing methods can differentiate between watermarked and unwatermarked text with high accuracy, they often face a trade-off between the quality of the generated text and the effectiveness of the watermarking process. In this work, we present a novel type of LLM watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text. The key strategy involves anchoring watermarked tokens to words that have specific Part-of-Speech (POS) tags. Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous LLM watermarking methods in quality across various tasks
Related papers
- Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
This work is the first to investigate the imperceptibility of watermarked Large Language Models (LLMs)
We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts.
Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts.
arXiv Detail & Related papers (2024-10-04T06:01:27Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
This paper proposes a novel topic-based watermarking algorithm for large language models (LLMs)
By using topic-specific token biases, we embed a topic-sensitive watermarking into the generated text.
We demonstrate that our proposed watermarking scheme classifies various watermarked text topics with 99.99% confidence.
arXiv Detail & Related papers (2024-04-02T17:49:40Z) - Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models [31.062753031312006]
Large language models generate high-quality responses with potential misinformation.
Watermarking is pivotal in this context, which involves embedding hidden markers in texts.
We introduce a novel multi-objective optimization (MOO) approach for watermarking.
Our method simultaneously achieves detectability and semantic integrity.
arXiv Detail & Related papers (2024-02-28T05:43:22Z) - New Evaluation Metrics Capture Quality Degradation due to LLM
Watermarking [28.53032132891346]
We introduce two new easy-to-use methods for evaluating watermarking algorithms for large-language models (LLMs)
Our experiments, conducted across various datasets, reveal that current watermarking methods are detectable by even simple classifiers.
Our findings underscore the trade-off between watermark robustness and text quality and highlight the importance of having more informative metrics to assess watermarking quality.
arXiv Detail & Related papers (2023-12-04T22:56:31Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
arXiv Detail & Related papers (2023-11-16T11:58:31Z) - A Robust Semantics-based Watermark for Large Language Model against Paraphrasing [50.84892876636013]
Large language models (LLMs) have show great ability in various natural language tasks.
There are concerns that LLMs are possible to be used improperly or even illegally.
We propose a semantics-based watermark framework SemaMark.
arXiv Detail & Related papers (2023-11-15T06:19:02Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark.
We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing.
arXiv Detail & Related papers (2023-06-30T07:24:32Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.