論文の概要: Learning Theory for Kernel Bilevel Optimization
- arxiv url: http://arxiv.org/abs/2502.08457v1
- Date: Wed, 12 Feb 2025 14:52:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:47:39.821491
- Title: Learning Theory for Kernel Bilevel Optimization
- Title(参考訳): カーネルバイレベル最適化のための学習理論
- Authors: Fares El Khoury, Edouard Pauwels, Samuel Vaiter, Michael Arbel,
- Abstract要約: 再現カーネルヒルベルト空間上で内部目的を最適化するカーネル双レベル最適化問題に対する一般化特性について検討する。
有限サンプル近似の下で二値問題に対する新しい一般化誤差境界を確立する。
これらの一般化誤差推定は、二段階問題の経験的離散化に適用された勾配に基づく手法の統計的精度を特徴付けることができる。
- 参考スコア(独自算出の注目度): 25.28618481877551
- License:
- Abstract: Bilevel optimization has emerged as a technique for addressing a wide range of machine learning problems that involve an outer objective implicitly determined by the minimizer of an inner problem. In this paper, we investigate the generalization properties for kernel bilevel optimization problems where the inner objective is optimized over a Reproducing Kernel Hilbert Space. This setting enables rich function approximation while providing a foundation for rigorous theoretical analysis. In this context, we establish novel generalization error bounds for the bilevel problem under finite-sample approximation. Our approach adopts a functional perspective, inspired by (Petrulionyte et al., 2024), and leverages tools from empirical process theory and maximal inequalities for degenerate $U$-processes to derive uniform error bounds. These generalization error estimates allow to characterize the statistical accuracy of gradient-based methods applied to the empirical discretization of the bilevel problem.
- Abstract(参考訳): 両レベル最適化は、内部問題の最小化によって暗黙的に決定される外的目的を含む幅広い機械学習問題に対処する手法として登場した。
本稿では,カーネルヒルベルト空間上で内部目標を最適化するカーネル双レベル最適化問題に対する一般化特性について検討する。
この設定は、厳密な理論解析の基礎を提供しながら、リッチ関数近似を可能にする。
この文脈では、有限サンプル近似の下での双レベル問題に対する新しい一般化誤差境界を確立する。
提案手法は (Petrulionyte et al , 2024) にインスパイアされた機能的視点を採用し, 経験的プロセス理論と最大不等式を用いて, 均一な誤差境界を導出するために$U$プロセスの退化を行う。
これらの一般化誤差推定は、二段階問題の経験的離散化に適用された勾配に基づく手法の統計的精度を特徴付けることができる。
関連論文リスト
- Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
大規模高次元データを用いたバイレベル最適化が開発されている。
本稿では凸と微分不可能な近似を伴う制約付き二値問題について考察する。
論文 参考訳(メタデータ) (2023-02-03T19:34:56Z) - On Implicit Bias in Overparameterized Bilevel Optimization [38.11483853830913]
双レベル問題は、それぞれ外問題と内問題と呼ばれる、ネストした2つのサブプロブレムから構成される。
本稿では,2レベル最適化のための勾配に基づくアルゴリズムの暗黙バイアスについて検討する。
ウォームスタートBLOによって得られる内部解は、外的目的に関する驚くべき量の情報を符号化できることを示す。
論文 参考訳(メタデータ) (2022-12-28T18:57:46Z) - Quantization-Based Optimization: Alternative Stochastic Approximation of
Global Optimization [0.0]
NP-hard問題における目的関数のエネルギーレベルを定量化するための大域的最適化アルゴリズムを提案する。
数値実験により,提案アルゴリズムはNP-ハード最適化問題の解法において従来の学習法よりも優れていた。
論文 参考訳(メタデータ) (2022-11-08T03:01:45Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Convergence Properties of Stochastic Hypergradients [38.64355126221992]
大規模データセットにおける低レベルの問題が経験的リスクである場合に重要となる過勾配の近似スキームについて検討する。
本研究では,理論解析を支援する数値実験を行い,実際にハイパーグラディエントを用いることの利点を示す。
論文 参考訳(メタデータ) (2020-11-13T20:50:36Z) - Towards Optimal Problem Dependent Generalization Error Bounds in
Statistical Learning Theory [11.840747467007963]
我々は,「ベスト勾配仮説」で評価された分散,有効損失誤差,ノルムとほぼ最適にスケールする問題依存率について検討する。
一様局所収束(uniform localized convergence)と呼ばれる原理的枠組みを導入する。
我々は,既存の一様収束と局所化解析のアプローチの基本的制約を,我々のフレームワークが解決していることを示す。
論文 参考訳(メタデータ) (2020-11-12T04:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。