論文の概要: Bridging Domain Adaptation and Graph Neural Networks: A Tensor-Based Framework for Effective Label Propagation
- arxiv url: http://arxiv.org/abs/2502.08505v2
- Date: Sat, 15 Feb 2025 16:00:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:02.811720
- Title: Bridging Domain Adaptation and Graph Neural Networks: A Tensor-Based Framework for Effective Label Propagation
- Title(参考訳): ブリッジングドメイン適応とグラフニューラルネットワーク: 効果的なラベル伝播のためのテンソルベースフレームワーク
- Authors: Tao Wen, Elynn Chen, Yuzhou Chen, Qi Lei,
- Abstract要約: グラフニューラルネットワーク(GNN)は近年,グラフデータ研究の主要なツールとなっている。
グラフ分類タスクにおける最先端のパフォーマンスにもかかわらず、GNNは監督下の単一のドメインで圧倒的に訓練されている。
本稿では,グラフデータと従来のドメイン適応手法のギャップを埋めるために,ラベル伝搬グラフニューラルネットワーク(LP-TGNN)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 23.79865440689265
- License:
- Abstract: Graph Neural Networks (GNNs) have recently become the predominant tools for studying graph data. Despite state-of-the-art performance on graph classification tasks, GNNs are overwhelmingly trained in a single domain under supervision, thus necessitating a prohibitively high demand for labels and resulting in poorly transferable representations. To address this challenge, we propose the Label-Propagation Tensor Graph Neural Network (LP-TGNN) framework to bridge the gap between graph data and traditional domain adaptation methods. It extracts graph topological information holistically with a tensor architecture and then reduces domain discrepancy through label propagation. It is readily compatible with general GNNs and domain adaptation techniques with minimal adjustment through pseudo-labeling. Experiments on various real-world benchmarks show that our LP-TGNN outperforms baselines by a notable margin. We also validate and analyze each component of the proposed framework in the ablation study.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は近年,グラフデータ研究の主要なツールとなっている。
グラフ分類タスクにおける最先端のパフォーマンスにもかかわらず、GNNは監督下にある単一のドメインで圧倒的に訓練されているため、ラベルに対する極めて高い需要が必要であり、転送可能な表現が不十分である。
この課題に対処するために,グラフデータと従来のドメイン適応手法のギャップを埋めるために,ラベル伝搬テンソルグラフニューラルネットワーク(LP-TGNN)フレームワークを提案する。
テンソルアーキテクチャを用いてグラフトポロジ情報をホモロジー的に抽出し、ラベル伝搬により領域の差を小さくする。
一般のGNNやドメイン適応技術と容易に互換性があり、擬似ラベルによる最小限の調整が可能である。
様々な実世界のベンチマーク実験により、我々のLP-TGNNは顕著なマージンでベースラインを上回ります。
また, アブレーション研究において, 提案フレームワークの各コンポーネントを検証, 解析した。
関連論文リスト
- GraphLoRA: Structure-Aware Contrastive Low-Rank Adaptation for Cross-Graph Transfer Learning [17.85404473268992]
グラフニューラルネットワーク(GNN)は、様々なグラフ解析タスクを扱うのに顕著な習熟度を示した。
汎用性にもかかわらず、GNNはトランスファービリティにおいて重大な課題に直面し、現実のアプリケーションでの利用を制限している。
グラフ領域によく訓練されたGNNを転送するための有効かつパラメータ効率のよいGraphLoRAを提案する。
論文 参考訳(メタデータ) (2024-09-25T06:57:42Z) - Rethinking Propagation for Unsupervised Graph Domain Adaptation [17.443218657417454]
Unlabelled Graph Domain Adaptation (UGDA)は、ラベル付きソースグラフから教師なしターゲットグラフに知識を転送することを目的としている。
本稿では,グラフ領域適応のためのA2GNNというシンプルな手法を提案する。
論文 参考訳(メタデータ) (2024-02-08T13:24:57Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Edge Directionality Improves Learning on Heterophilic Graphs [42.5099159786891]
我々は、有向グラフを深層学習するための新しいフレームワークであるDir-GNN(Directed Graph Neural Network)を紹介する。
Dir-GNNは、任意のメッセージパッシングニューラルネットワーク(MPNN)を拡張して、エッジ指向性情報を考慮するために使用することができる。
我々は,Dir-GNNが従来のMPNNよりも高い指向性Weisfeiler-Lehmanテストの表現性に一致することを証明した。
論文 参考訳(メタデータ) (2023-05-17T18:06:43Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。