Explanation based In-Context Demonstrations Retrieval for Multilingual Grammatical Error Correction
- URL: http://arxiv.org/abs/2502.08507v1
- Date: Wed, 12 Feb 2025 15:41:43 GMT
- Title: Explanation based In-Context Demonstrations Retrieval for Multilingual Grammatical Error Correction
- Authors: Wei Li, Wen Luo, Guangyue Peng, Houfeng Wang,
- Abstract summary: Grammatical error correction (GEC) aims to correct grammatical, spelling, and semantic errors in natural language text.
We propose a novel retrieval method based on natural language grammatical error explanations (GEE)
Our method retrieves suitable few-shot demonstrations by matching the GEE of the test input with that of pre-constructed database samples.
- Score: 19.95974494301433
- License:
- Abstract: Grammatical error correction (GEC) aims to correct grammatical, spelling, and semantic errors in natural language text. With the growing of large language models (LLMs), direct text generation has gradually become the focus of the GEC methods, and few-shot in-context learning presents a cost-effective solution. However, selecting effective in-context examples remains challenging, as the similarity between input texts does not necessarily correspond to similar grammatical error patterns. In this paper, we propose a novel retrieval method based on natural language grammatical error explanations (GEE) to address this issue. Our method retrieves suitable few-shot demonstrations by matching the GEE of the test input with that of pre-constructed database samples, where explanations for erroneous samples are generated by LLMs. We conducted multilingual GEC few-shot experiments on both major open-source and closed-source LLMs. Experiments across five languages show that our method outperforms existing semantic and BM25-based retrieval techniques, without requiring additional training or language adaptation. This also suggests that matching error patterns is key to selecting examples.
Related papers
- Idiosyncrasies in Large Language Models [54.26923012617675]
We unveil and study idiosyncrasies in Large Language Models (LLMs)
We find that fine-tuning existing text embedding models on LLM-generated texts yields excellent classification accuracy.
We leverage LLM as judges to generate detailed, open-ended descriptions of each model's idiosyncrasies.
arXiv Detail & Related papers (2025-02-17T18:59:02Z) - Loss-Aware Curriculum Learning for Chinese Grammatical Error Correction [21.82403446634522]
Chinese grammatical error correction (CGEC) aims to detect and correct errors in the input Chinese sentences.
Current approaches ignore that correction difficulty varies across different instances and treat these samples equally.
We propose a multi-granularity Curriculum Learning framework to address this problem.
arXiv Detail & Related papers (2024-12-31T08:11:49Z) - Contextual Spelling Correction with Language Model for Low-resource Setting [0.0]
A small-scale word-based transformer LM is trained to provide the SC model with contextual understanding.
Probability of error happening(error model) is extracted from the corpus.
Combination of LM and error model is used to develop the SC model through the well-known noisy channel framework.
arXiv Detail & Related papers (2024-04-28T05:29:35Z) - Ungrammatical-syntax-based In-context Example Selection for Grammatical Error Correction [8.655807096424732]
In this paper, we propose a novel ungrammatical-syntax-based in-context example selection strategy for grammatical error correction.
Specifically, we measure similarity of sentences based on their syntactic structures with diverse algorithms, and identify optimal ICL examples sharing the most similar ill-formed syntax to the test input.
arXiv Detail & Related papers (2024-03-28T10:05:57Z) - Prompting open-source and commercial language models for grammatical
error correction of English learner text [19.192210777082053]
Large language models (LLMs) can be prompt to produce texts which are fluent and grammatical.
We evaluate how well LLMs can perform at grammatical error correction (GEC) by measuring their performance on established benchmark datasets.
We find that several open-source models outperform commercial ones on minimal edit benchmarks, and that in some settings zero-shot prompting is just as competitive as few-shot prompting.
arXiv Detail & Related papers (2024-01-15T14:19:47Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Bridging the Gap Between Training and Inference of Bayesian Controllable
Language Models [58.990214815032495]
Large-scale pre-trained language models have achieved great success on natural language generation tasks.
BCLMs have been shown to be efficient in controllable language generation.
We propose a "Gemini Discriminator" for controllable language generation which alleviates the mismatch problem with a small computational cost.
arXiv Detail & Related papers (2022-06-11T12:52:32Z) - Improving Pre-trained Language Models with Syntactic Dependency
Prediction Task for Chinese Semantic Error Recognition [52.55136323341319]
Existing Chinese text error detection mainly focuses on spelling and simple grammatical errors.
Chinese semantic errors are understudied and more complex that humans cannot easily recognize.
arXiv Detail & Related papers (2022-04-15T13:55:32Z) - A Unified Strategy for Multilingual Grammatical Error Correction with
Pre-trained Cross-Lingual Language Model [100.67378875773495]
We propose a generic and language-independent strategy for multilingual Grammatical Error Correction.
Our approach creates diverse parallel GEC data without any language-specific operations.
It achieves the state-of-the-art results on the NLPCC 2018 Task 2 dataset (Chinese) and obtains competitive performance on Falko-Merlin (German) and RULEC-GEC (Russian)
arXiv Detail & Related papers (2022-01-26T02:10:32Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - AStitchInLanguageModels: Dataset and Methods for the Exploration of
Idiomaticity in Pre-Trained Language Models [7.386862225828819]
This work presents a novel dataset of naturally occurring sentences containing MWEs manually classified into a fine-grained set of meanings.
We use this dataset in two tasks designed to test i) a language model's ability to detect idiom usage, and ii) the effectiveness of a language model in generating representations of sentences containing idioms.
arXiv Detail & Related papers (2021-09-09T16:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.