論文の概要: Rapid Whole Brain Mesoscale In-vivo MR Imaging using Multi-scale Implicit Neural Representation
- arxiv url: http://arxiv.org/abs/2502.08634v1
- Date: Wed, 12 Feb 2025 18:48:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:08.426393
- Title: Rapid Whole Brain Mesoscale In-vivo MR Imaging using Multi-scale Implicit Neural Representation
- Title(参考訳): マルチスケールインプシシット・ニューラル表現を用いた高速脳メソスケールIn-vivo MRイメージング
- Authors: Jun Lyu, Lipeng Ning, William Consagra, Qiang Liu, Richard J. Rushmore, Berkin Bilgic, Yogesh Rathi,
- Abstract要約: 本稿では、教師なしニューラルネットワークに基づくアルゴリズムであるROVER-MRIを提案する。
ROVER-MRIは、微細な解剖学的詳細を維持しながらスキャン時間を2倍に効果的に削減する。
我々は,前例のない180mum等方性空間分解能を持つヒト脳内T2強調像の再構成を実現した。
- 参考スコア(独自算出の注目度): 6.894117592271847
- License:
- Abstract: Purpose: To develop and validate a novel image reconstruction technique using implicit neural representations (INR) for multi-view thick-slice acquisitions while reducing the scan time but maintaining high signal-to-noise ratio (SNR). Methods: We propose Rotating-view super-resolution (ROVER)-MRI, an unsupervised neural network-based algorithm designed to reconstruct MRI data from multi-view thick slices, effectively reducing scan time by 2-fold while maintaining fine anatomical details. We compare our method to both bicubic interpolation and the current state-of-the-art regularized least-squares super-resolution reconstruction (LS-SRR) technique. Validation is performed using ground-truth ex-vivo monkey brain data, and we demonstrate superior reconstruction quality across several in-vivo human datasets. Notably, we achieve the reconstruction of a whole human brain in-vivo T2-weighted image with an unprecedented 180{\mu}m isotropic spatial resolution, accomplished in just 17 minutes of scan time on a 7T MRI scanner. Results: ROVER-MRI outperformed LS-SRR method in terms of reconstruction quality with 22.4% lower relative error (RE) and 7.5% lower full-width half maximum (FWHM) indicating better preservation of fine structural details in nearly half the scan time. Conclusion: ROVER-MRI offers an efficient and robust approach for mesoscale MR imaging, enabling rapid, high-resolution whole-brain scans. Its versatility holds great promise for research applications requiring anatomical details and time-efficient imaging.
- Abstract(参考訳): 目的: 暗黙的ニューラル表現(INR)を用いて, スキャン時間を短縮しつつ, 高信号対雑音比(SNR)を維持しつつ, 画像再構成技術を開発し, 検証する。
方法: マルチビュー厚みスライスからMRIデータを再構成するための教師なしニューラルネットワークベースアルゴリズムであるROVER-MRIを提案し, 微細解剖学的詳細を維持しつつ, スキャン時間を2倍に短縮する。
本手法をバイコビック補間法と最先端の正則化最小二乗超解像再構成(LS-SRR)技術と比較した。
現生猿の脳データを用いて検証を行い、その復元精度を複数の人体データセットで検証した。
特に、7T MRIスキャナーでわずか17分間のスキャンで達成した180{\mu}m等方分解能で、人間の脳全体のT2強調画像の再構築を実現した。
結果:ROVER-MRIによるLS-SRR法の再現精度は22.4%低い相対誤差(RE)と7.5%低いフル幅ハーフマックス(FWHM)で優れており,スキャン時間の半分近くで微細構造の詳細の保存性が良好であった。
結論:ROVER-MRIは、メソスケールMRIのための効率的で堅牢なアプローチを提供し、高速で高解像度の全脳スキャンを可能にする。
その汎用性は、解剖学的詳細と時間効率のイメージングを必要とする研究用途に大いに期待できる。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Deep-learning-based acceleration of MRI for radiotherapy planning of
pediatric patients with brain tumors [39.58317527488534]
RT専用レシーバコイルアライメントで取得したアンダーサンプルデータからMRI再構成を行う深層学習法を開発した。
DeepMRIRecは、評価された最先端手法を超える構造的類似度スコアを4倍に削減した。
論文 参考訳(メタデータ) (2023-11-22T16:01:44Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Predicting 4D Liver MRI for MR-guided Interventions [2.9699476315275772]
臓器の動きは、画像誘導の介入において未解決の課題となる。
視野が大きいリアルタイム高分解能4次元MRIのための新しい手法を提案する。
取得時間を2分に短縮した小さなトレーニングサイズでは,すでに有望な結果が得られていることを示す。
論文 参考訳(メタデータ) (2022-02-25T11:34:25Z) - Edge-Enhanced Dual Discriminator Generative Adversarial Network for Fast
MRI with Parallel Imaging Using Multi-view Information [10.616409735438756]
高速なマルチチャンネルMRI再構成のための並列画像結合型二重判別器生成対向ネットワーク(PIDD-GAN)を提案する。
1つの判別器は全体像再構成に使用され、もう1つはエッジ情報の強化に責任がある。
以上の結果から,PIDD-GANは良質なMR画像と良好な保存エッジ情報を提供することがわかった。
論文 参考訳(メタデータ) (2021-12-10T10:49:26Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
超解像法はMRIの高速化に優れた性能を示した。
場合によっては、スキャン時間が長い場合でも高解像度画像を得るのは困難である。
我々は,周期的損失と注意機構を有するGAN(Generative Adversarial Network)を用いた新しい超解像法を提案した。
論文 参考訳(メタデータ) (2021-07-21T10:07:22Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI
Reconstruction with Deep T1 Prior [19.720518236653195]
深部T1を組み込んだDuDoRNet(DuDoRNet)を提案し,k空間と画像の同時復元を行う。
提案手法は常に最先端の手法より優れており,高品質なMRIを再構築することができる。
論文 参考訳(メタデータ) (2020-01-11T21:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。