Joint Transmit and Pinching Beamforming for PASS: Optimization-Based or Learning-Based?
- URL: http://arxiv.org/abs/2502.08637v1
- Date: Wed, 12 Feb 2025 18:54:10 GMT
- Title: Joint Transmit and Pinching Beamforming for PASS: Optimization-Based or Learning-Based?
- Authors: Xiaoxia Xu, Xidong Mu, Yuanwei Liu, Arumugam Nallanathan,
- Abstract summary: A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.
It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)
The positions of PAs can be reconfigured to both spanning large-scale path and space.
- Score: 89.05848771674773
- License:
- Abstract: A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Tranformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 30% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
Related papers
- Co-learning-aided Multi-modal-deep-learning Framework of Passive DOA Estimators for a Heterogeneous Hybrid Massive MIMO Receiver [16.847344273958292]
fully-digital (FD) massive multiple-input multiple-output (MIMO) antenna arrays has been widely applied in data transmission and direction of arrival (DOA) measurements.
It confronts with two main challenges: high computational complexity and circuit cost.
The two problems may be addressed well by hybrid analog-digital (HAD) structure.
But there exists the problem of phase ambiguity for HAD, which leads to its low-efficiency or high-latency.
arXiv Detail & Related papers (2024-04-27T07:34:36Z) - Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems.
The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration.
In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly.
arXiv Detail & Related papers (2023-11-08T08:54:56Z) - Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive
MIMO-OFDM Systems with Implicit CSI [29.11998008894847]
We propose a data-driven deep learning-based unified hybrid beamforming framework for time division duplex and frequency division duplex systems.
For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network.
While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network.
arXiv Detail & Related papers (2022-01-18T07:21:00Z) - Learning OFDM Waveforms with PAPR and ACLR Constraints [15.423422040627331]
We propose a learning-based method to design OFDM-based waveforms that satisfy selected constraints while maximizing an achievable information rate.
We show that the end-to-end system is able to satisfy target PAPR and ACLR constraints and allows significant throughput gains.
arXiv Detail & Related papers (2021-10-21T08:58:59Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Bi-level Off-policy Reinforcement Learning for Volt/VAR Control
Involving Continuous and Discrete Devices [2.079959811127612]
In Volt/Var control, both slow timescale discrete devices (STDDs) and fast timescale continuous devices (FTCDs) are involved.
Traditional optimization methods are heavily based on accurate models of the system, but sometimes impractical because of their unaffordable effort on modelling.
In this paper, a novel bi-level off-policy reinforcement learning (RL) algorithm is proposed to solve this problem in a model-free manner.
arXiv Detail & Related papers (2021-04-13T02:22:43Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.