論文の概要: Self-Evaluation for Job-Shop Scheduling
- arxiv url: http://arxiv.org/abs/2502.08684v1
- Date: Wed, 12 Feb 2025 11:22:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:49:53.775267
- Title: Self-Evaluation for Job-Shop Scheduling
- Title(参考訳): ジョブショップスケジューリングの自己評価
- Authors: Imanol Echeverria, Maialen Murua, Roberto Santana,
- Abstract要約: スケジューリングやルート計画といった組合せ最適化問題は、様々な産業において重要であるが、NPハードの性質から計算的に難解である。
本稿では,従来の段階的アプローチを超えて,課題のサブセットを生成し,評価する新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.3927943269211593
- License:
- Abstract: Combinatorial optimization problems, such as scheduling and route planning, are crucial in various industries but are computationally intractable due to their NP-hard nature. Neural Combinatorial Optimization methods leverage machine learning to address these challenges but often depend on sequential decision-making, which is prone to error accumulation as small mistakes propagate throughout the process. Inspired by self-evaluation techniques in Large Language Models, we propose a novel framework that generates and evaluates subsets of assignments, moving beyond traditional stepwise approaches. Applied to the Job-Shop Scheduling Problem, our method integrates a heterogeneous graph neural network with a Transformer to build a policy model and a self-evaluation function. Experimental validation on challenging, well-known benchmarks demonstrates the effectiveness of our approach, surpassing state-of-the-art methods.
- Abstract(参考訳): スケジューリングやルート計画といった組合せ最適化問題は、様々な産業において重要であるが、NPハードの性質から計算的に難解である。
Neural Combinatorial Optimizationの手法は機械学習を利用してこれらの課題に対処するが、多くの場合は逐次的な意思決定に依存する。
大規模言語モデルにおける自己評価手法に着想を得て,従来の段階的アプローチを超えて,課題のサブセットを生成し,評価する新しいフレームワークを提案する。
ジョブショップスケジューリング問題に適用し,不均一なグラフニューラルネットワークとトランスフォーマを統合し,ポリシーモデルと自己評価関数を構築する。
挑戦的、よく知られたベンチマークの実験的検証は、最先端の手法を超越して、我々のアプローチの有効性を示す。
関連論文リスト
- Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Take a Step and Reconsider: Sequence Decoding for Self-Improved Neural Combinatorial Optimization [1.1510009152620668]
自己改善学習のための単純で問題に依存しないシーケンス復号法を提案する。
以前にサンプリングされたシーケンスを無視するためにポリシーを変更することで、目に見えない代替案のみを検討するように強制する。
本手法は,ジョブショップスケジューリング問題における従来のNCO手法よりも優れていた。
論文 参考訳(メタデータ) (2024-07-24T12:06:09Z) - Multi-objective Binary Differential Approach with Parameter Tuning for Discovering Business Process Models: MoD-ProM [2.3423913554158653]
本稿では,プロセス発見のための多目的フレームワークにおけるバイナリ微分進化手法について考察する。
提案手法により生成されたプロセスモデルは、最先端のアルゴリズムで生成されたプロセスよりも優れているか、少なくとも優れていることが示されている。
論文 参考訳(メタデータ) (2024-06-25T16:53:55Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - Self-Improvement for Neural Combinatorial Optimization: Sample without Replacement, but Improvement [1.1510009152620668]
建設的ニューラル最適化の現在の手法は、通常、専門家ソリューションからの行動クローニングや強化学習からのポリシー勾配手法を用いてポリシーを訓練する。
各エポックにおける現在のモデルを用いて、ランダムなインスタンスに対して複数の解をサンプリングし、その後、教師付き模倣学習のための専門家の軌跡として最適な解を選択することにより、この2つを橋渡しする。
我々は,旅行セールスマン問題とキャパシタントカールーティング問題に対する我々のアプローチを評価し,本手法で訓練したモデルは,専門家データで訓練したモデルと同等の性能と一般化を実現する。
論文 参考訳(メタデータ) (2024-03-22T13:09:10Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Enhancing Constraint Programming via Supervised Learning for Job Shop
Scheduling [6.4778725014634615]
CPソルバにおいて、最初に探索する変数を選択するために使用される変数順序付け戦略は、ソルバの有効性に大きな影響を及ぼす。
本稿では,教師付き学習に基づく新しい変数順序付け手法を提案する。
学習に基づく手法は問題インスタンスの最適解を予測し、予測された解を用いてCPソルバの変数を順序付けする。
論文 参考訳(メタデータ) (2022-11-26T06:30:28Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Continual Learning using a Bayesian Nonparametric Dictionary of Weight
Factors [75.58555462743585]
訓練されたニューラルネットワークは、シーケンシャルなタスク設定で破滅的な忘れを経験する傾向がある。
Indian Buffet Process (IBP) に基づく原則的非パラメトリック手法を提案する。
連続学習ベンチマークにおける本手法の有効性を実証し、トレーニングを通して重み要因の配分と再利用方法を分析する。
論文 参考訳(メタデータ) (2020-04-21T15:20:19Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
本稿では,操作を微分可能で局所的に一定ではない操作に変換する手法を提案する。
提案手法は摂動に依拠し,既存の解法とともに容易に利用することができる。
本稿では,この枠組みが,構造化予測において発達した損失の族とどのように結びつくかを示し,学習課題におけるそれらの使用に関する理論的保証を与える。
論文 参考訳(メタデータ) (2020-02-20T11:11:32Z) - Model-based Multi-Agent Reinforcement Learning with Cooperative
Prioritized Sweeping [4.5497948012757865]
本稿では,新しいモデルに基づく強化学習アルゴリズム,Cooperative Prioritized Sweepingを提案する。
このアルゴリズムは、値関数を近似するために因子化を利用することにより、大きな問題に対するサンプル効率の学習を可能にする。
我々の手法は、よく知られたSysAdminベンチマークとランダム化環境の両方において、最先端の協調的なQ-ラーニングアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2020-01-15T19:13:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。