Quantum communication over bandwidth-and-time-limited channels
- URL: http://arxiv.org/abs/2502.08831v1
- Date: Wed, 12 Feb 2025 22:45:16 GMT
- Title: Quantum communication over bandwidth-and-time-limited channels
- Authors: Aditya Gandotra, Zhaoyou Wang, Aashish A. Clerk, Liang Jiang,
- Abstract summary: We investigate quantum channel capacities for bandwidth-and-time-limited (BTL) channels to establish the optimal communication strategy in a realistic setting.
Our findings reveal a general feature of sequential activation of quantum channels as the input signal duration increases, as well as the existence of optimal signal length for scenarios where only a limited number of channels are in use.
- Score: 1.6437645274005803
- License:
- Abstract: Standard communication systems have transmission spectra that characterize their ability to perform frequency multiplexing over a finite bandwidth. Realistic quantum signals in quantum communication systems like transducers are inherently limited in time due to intrinsic decoherence and finite latency, which hinders the direct implementation of frequency-multiplexed encoding. We investigate quantum channel capacities for bandwidth-and-time-limited (BTL) channels to establish the optimal communication strategy in a realistic setting. For pure-loss bosonic channels, we derive analytical solutions of the optimal encoding and decoding modes for Lorentzian and box transmission spectra, along with numerical solutions for various other transmissions. Our findings reveal a general feature of sequential activation of quantum channels as the input signal duration increases, as well as the existence of optimal signal length for scenarios where only a limited number of channels are in use.
Related papers
- Feasibility study of frequency-encoded photonic qubits over a free-space channel [9.7383000873479]
We propose and demonstrate a novel approach that leverages field-widened interferometers to decode frequency-bins transmitted over free-space channels.
Our passive approach expands the versatility of frequency-bin encoding, paving the way towards long-range and fluctuating channels.
arXiv Detail & Related papers (2024-12-08T23:27:38Z) - Covert Quantum Communication Over Optical Channels [2.094817774591302]
We show a emphsquare root law (SRL) for quantum covert communication similar to that for classical.
Our proof uses photonic dual-rail qubit encoding, which has been proposed for long-range repeater-based quantum communication.
Our converse employs prior covert signal power limit results and adapts well-known methods to upper bound quantum capacity of optical channels.
arXiv Detail & Related papers (2024-01-12T18:54:56Z) - Fault-tolerant Coding for Entanglement-Assisted Communication [46.0607942851373]
This paper studies the study of fault-tolerant channel coding for quantum channels.
We use techniques from fault-tolerant quantum computing to establish coding theorems for sending classical and quantum information in this scenario.
We extend these methods to the case of entanglement-assisted communication, in particular proving that the fault-tolerant capacity approaches the usual capacity when the gate error approaches zero.
arXiv Detail & Related papers (2022-10-06T14:09:16Z) - Coexistent quantum channel characterization using spectrally resolved
Bayesian quantum process tomography [0.0]
Coexistence of quantum and classical signals over same optical fiber is critical for operating quantum networks.
We systematically characterize the quantum channel that results from simultaneously distributing approximate single-photon polarization-encoded qubits.
arXiv Detail & Related papers (2022-08-30T19:57:45Z) - Operating Fiber Networks in the Quantum Limit [0.0]
We show that a use of optimal quantum receivers allows an estimated $55%$ decrease in energy consumption of all-optical amplifiers in network configurations that are typical today.
We find that quantum receiver technology allows for a logarithmic scaling of the system capacity with the baud-rate, while Shannon-type systems are limited by the transmit power.
arXiv Detail & Related papers (2022-01-27T13:46:13Z) - Frequency-bin entanglement from domain-engineered down-conversion [101.18253437732933]
We present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity.
We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths.
arXiv Detail & Related papers (2022-01-18T19:00:29Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - Coherent control and distinguishability of quantum channels via
PBS-diagrams [59.94347858883343]
We introduce a graphical language for coherent control of general quantum channels inspired by practical quantum optical setups involving polarising beam splitters (PBS)
We characterise the observational equivalence of purified channels in various coherent-control contexts, paving the way towards a faithful representation of quantum channels under coherent control.
arXiv Detail & Related papers (2021-03-02T22:56:25Z) - Coherent phase transfer for real-world twin-field quantum key
distribution [0.0]
We develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss.
Our technique reduces the quantum-bit-error-rate contributed by channel length variations to 1%, representing an effective solution for real-world quantum communications.
arXiv Detail & Related papers (2020-12-30T15:40:07Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.