Scalable Private Partition Selection via Adaptive Weighting
- URL: http://arxiv.org/abs/2502.08878v1
- Date: Thu, 13 Feb 2025 01:27:11 GMT
- Title: Scalable Private Partition Selection via Adaptive Weighting
- Authors: Justin Y. Chen, Vincent Cohen-Addad, Alessandro Epasto, Morteza Zadimoghaddam,
- Abstract summary: In a private set union, users hold subsets of items from an unbounded universe.
The goal is to output as many items as possible from the union of the users' sets while maintaining user-level differential privacy.
We propose an algorithm for this problem, MaximumDegree (MAD), which adaptively reroutes weight from items with weight far above the threshold needed for privacy to items with smaller weight.
- Score: 66.09199304818928
- License:
- Abstract: In the differentially private partition selection problem (a.k.a. private set union, private key discovery), users hold subsets of items from an unbounded universe. The goal is to output as many items as possible from the union of the users' sets while maintaining user-level differential privacy. Solutions to this problem are a core building block for many privacy-preserving ML applications including vocabulary extraction in a private corpus, computing statistics over categorical data, and learning embeddings over user-provided items. We propose an algorithm for this problem, MaximumAdaptiveDegree (MAD), which adaptively reroutes weight from items with weight far above the threshold needed for privacy to items with smaller weight, thereby increasing the probability that less frequent items are output. Our algorithm can be efficiently implemented in massively parallel computation systems allowing scalability to very large datasets. We prove that our algorithm stochastically dominates the standard parallel algorithm for this problem. We also develop a two-round version of our algorithm where results of the computation in the first round are used to bias the weighting in the second round to maximize the number of items output. In experiments, our algorithms provide the best results across the board among parallel algorithms and scale to datasets with hundreds of billions of items, up to three orders of magnitude larger than those analyzed by prior sequential algorithms.
Related papers
- Privacy-Computation trade-offs in Private Repetition and Metaselection [28.11248357424981]
A Private Repetition algorithm takes as input a differentially private algorithm with constant success probability and boosts it to one that succeeds with high probability.
Existing algorithms for these tasks pay either a large overhead in privacy cost, or a large overhead in computational cost.
This is in stark contrast with the non-private setting, where the failure probability falls exponentially in the computational overhead.
arXiv Detail & Related papers (2024-10-22T18:33:02Z) - Differentially Private Heavy Hitter Detection using Federated Analytics [33.69819799254375]
We study practicals to improve the performance of prefix-tree based algorithms for differentially private heavy hitter detection.
Our model assumes each user has multiple data points and the goal is to learn as many of the most frequent data points as possible across all users' data with aggregate and local differential privacy.
arXiv Detail & Related papers (2023-07-21T17:59:15Z) - Fast Optimal Locally Private Mean Estimation via Random Projections [58.603579803010796]
We study the problem of locally private mean estimation of high-dimensional vectors in the Euclidean ball.
We propose a new algorithmic framework, ProjUnit, for private mean estimation.
Our framework is deceptively simple: each randomizer projects its input to a random low-dimensional subspace, normalizes the result, and then runs an optimal algorithm.
arXiv Detail & Related papers (2023-06-07T14:07:35Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
In deep active learning, it is important to choose multiple examples to markup at each step.
Existing solutions to this problem, such as BatchBALD, have significant limitations in selecting a large number of examples.
We present the Large BatchBALD algorithm, which aims to achieve comparable quality while being more computationally efficient.
arXiv Detail & Related papers (2023-01-13T11:45:17Z) - Efficient and Accurate Top-$K$ Recovery from Choice Data [1.14219428942199]
In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items.
We propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery.
We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models.
arXiv Detail & Related papers (2022-06-23T22:05:08Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - LSF-Join: Locality Sensitive Filtering for Distributed All-Pairs Set
Similarity Under Skew [58.21885402826496]
All-pairs set similarity is a widely used data mining task, even for large and high-dimensional datasets.
We present a new distributed algorithm, LSF-Join, for approximate all-pairs set similarity.
We show that LSF-Join efficiently finds most close pairs, even for small similarity thresholds and for skewed input sets.
arXiv Detail & Related papers (2020-03-06T00:06:20Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.