WENDy for Nonlinear-in-Parameters ODEs
- URL: http://arxiv.org/abs/2502.08881v2
- Date: Thu, 20 Feb 2025 01:25:20 GMT
- Title: WENDy for Nonlinear-in-Parameters ODEs
- Authors: Nic Rummel, Daniel A. Messenger, Stephen Becker, Vanja Dukic, David M. Bortz,
- Abstract summary: The Weak-form Estimation of Non-linear Dynamics (WEN) is extended to accommodate systems of ordinary differential equations that are nonlinear-ins.
We present results on a suite of benchmark systems to demonstrate the practical benefits of our approach.
- Score: 1.9573380763700712
- License:
- Abstract: The Weak-form Estimation of Non-linear Dynamics (WENDy) algorithm is extended to accommodate systems of ordinary differential equations that are nonlinear-in-parameters. The extension rests on derived analytic expressions for a likelihood function, its gradient and its Hessian matrix. WENDy makes use of these to approximate a maximum likelihood estimator based on optimization routines suited for non-convex optimization problems. The resulting parameter estimation algorithm has better accuracy, a substantially larger domain of convergence, and is often orders of magnitude faster than the conventional output error least squares method (based on forward solvers). The algorithm is efficiently implemented in Julia. We demonstrate the algorithm's ability to accommodate the weak form optimization for both additive normal and multiplicative log-normal noise, and present results on a suite of benchmark systems of ordinary differential equations. In order to demonstrate the practical benefits of our approach, we present extensive comparisons between our method and output error methods in terms of accuracy, precision, bias, and coverage.
Related papers
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
This work addresses data-driven inverse optimization (IO)
The goal is to estimate unknown parameters in an optimization model from observed decisions that can be assumed to be optimal or near-optimal.
arXiv Detail & Related papers (2024-05-28T06:52:17Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Fast Screening Rules for Optimal Design via Quadratic Lasso
Reformulation [0.135975510645475]
In this work, we derive safe screening rules that can be used to discard inessential samples.
The new tests are much faster to compute, especially for problems involving a parameter space of high dimension.
We show how an existing homotopy algorithm to compute the regularization path of the lasso method can be reparametrized with respect to the squared $ell_$-penalty.
arXiv Detail & Related papers (2023-10-13T08:10:46Z) - An Accelerated Block Proximal Framework with Adaptive Momentum for
Nonconvex and Nonsmooth Optimization [2.323238724742687]
We propose an accelerated block proximal linear framework with adaptive momentum (ABPL$+$) for nonsmooth and nonsmooth optimization.
We analyze the potential causes of the extrapolation step failing in some algorithms, and resolve this issue by enhancing the comparison process.
We extend our algorithm to any scenario involving updating the gradient step and the linear extrapolation step.
arXiv Detail & Related papers (2023-08-23T13:32:31Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Accelerated nonlinear primal-dual hybrid gradient algorithms with
applications to machine learning [0.0]
primal-dual hybrid gradient (PDHG) is a first-order method that splits convex optimization problems with saddle-point structure into smaller subproblems.
PDHG requires stepsize parameters fine-tuned for the problem at hand.
We introduce accelerated nonlinear variants of the PDHG algorithm that can achieve, for a broad class of optimization problems relevant to machine learning.
arXiv Detail & Related papers (2021-09-24T22:37:10Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.