Exploring Emotion-Sensitive LLM-Based Conversational AI
- URL: http://arxiv.org/abs/2502.08920v1
- Date: Thu, 13 Feb 2025 03:13:38 GMT
- Title: Exploring Emotion-Sensitive LLM-Based Conversational AI
- Authors: Antonin Brun, Ruying Liu, Aryan Shukla, Frances Watson, Jonathan Gratch,
- Abstract summary: We compare emotion-sensitive and emotion-insensitive LLM-based chatbots across 30 participants.
We highlight that perceptions of trustworthiness and competence were higher in the case of the emotion-sensitive chatbots.
We discuss implications of improved user satisfaction from emotion-sensitive chatbots and potential applications in support services.
- Score: 1.2466379414976048
- License:
- Abstract: Conversational AI chatbots have become increasingly common within the customer service industry. Despite improvements in their emotional development, they often lack the authenticity of real customer service interactions or the competence of service providers. By comparing emotion-sensitive and emotion-insensitive LLM-based chatbots across 30 participants, we aim to explore how emotional sensitivity in chatbots influences perceived competence and overall customer satisfaction in service interactions. Additionally, we employ sentiment analysis techniques to analyze and interpret the emotional content of user inputs. We highlight that perceptions of chatbot trustworthiness and competence were higher in the case of the emotion-sensitive chatbot, even if issue resolution rates were not affected. We discuss implications of improved user satisfaction from emotion-sensitive chatbots and potential applications in support services.
Related papers
- Empathetic Response in Audio-Visual Conversations Using Emotion Preference Optimization and MambaCompressor [44.499778745131046]
Our study introduces a dual approach: firstly, we employ Emotional Preference Optimization (EPO) to train chatbots.
This training enables the model to discern fine distinctions between correct and counter-emotional responses.
Secondly, we introduce MambaCompressor to effectively compress and manage extensive conversation histories.
Our comprehensive experiments across multiple datasets demonstrate that our model significantly outperforms existing models in generating empathetic responses and managing lengthy dialogues.
arXiv Detail & Related papers (2024-12-23T13:44:51Z) - Tracking Emotional Dynamics in Chat Conversations: A Hybrid Approach using DistilBERT and Emoji Sentiment Analysis [0.0]
This paper explores a hybrid approach to tracking emotional dynamics in chat conversations by combining text emotion detection and emoji sentiment analysis.
A Twitter dataset was analyzed using various machine learning algorithms, including SVM, Random Forest, and AdaBoost.
Our findings show that integrating text and emoji analysis is an effective way of tracking chat emotion, with possible applications in customer service, work chats, and social media interactions.
arXiv Detail & Related papers (2024-08-03T18:28:31Z) - "We care": Improving Code Mixed Speech Emotion Recognition in
Customer-Care Conversations [36.9886023078247]
Speech Emotion Recognition (SER) is the task of identifying the emotion expressed in a spoken utterance.
In this paper, we show that by incorporating word-level VAD value we improve on the task of SER by 2%, for negative emotions.
Our study can be utilized to develop conversational agents which are more polite and empathetic in such situations.
arXiv Detail & Related papers (2023-08-06T15:56:12Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
We take the first step towards exploring the ability of Large Language Models to understand emotional stimuli.
Our experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts.
Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks.
arXiv Detail & Related papers (2023-07-14T00:57:12Z) - A Deep Learning Approach to Integrate Human-Level Understanding in a
Chatbot [0.4632366780742501]
Unlike humans, chatbots can serve multiple customers at a time, are available 24/7 and reply in less than a fraction of a second.
We performed sentiment analysis, emotion detection, intent classification and named-entity recognition using deep learning to develop chatbots with humanistic understanding and intelligence.
arXiv Detail & Related papers (2021-12-31T22:26:41Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns.
We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning.
To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy.
arXiv Detail & Related papers (2021-10-08T07:44:47Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Towards an Online Empathetic Chatbot with Emotion Causes [10.700455393948818]
It is critical to learn the causes that evoke the users' emotion for empathetic responding.
To gather emotion causes in online environments, we leverage counseling strategies.
We verify the effectiveness of the proposed approach by comparing our judgements with several SOTA methods.
arXiv Detail & Related papers (2021-05-11T02:52:46Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
We provide a NICO robot with the ability to learn the associations between a perceived auditory stimulus and an emotional expression.
NICO is able to do this for both individual subjects and specific stimuli, with the aid of an emotion-driven dialogue system.
The robot is then able to use this information to determine a subject's enjoyment of perceived auditory stimuli in a real HRI scenario.
arXiv Detail & Related papers (2021-03-05T20:55:48Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.