Towards an Online Empathetic Chatbot with Emotion Causes
- URL: http://arxiv.org/abs/2105.11903v1
- Date: Tue, 11 May 2021 02:52:46 GMT
- Title: Towards an Online Empathetic Chatbot with Emotion Causes
- Authors: Yanran Li and Ke Li and Hongke Ning and xiaoqiang Xia and Yalong Guo
and Chen Wei and Jianwei Cui and Bin Wang
- Abstract summary: It is critical to learn the causes that evoke the users' emotion for empathetic responding.
To gather emotion causes in online environments, we leverage counseling strategies.
We verify the effectiveness of the proposed approach by comparing our judgements with several SOTA methods.
- Score: 10.700455393948818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing emotion-aware conversational models usually focus on controlling the
response contents to align with a specific emotion class, whereas empathy is
the ability to understand and concern the feelings and experience of others.
Hence, it is critical to learn the causes that evoke the users' emotion for
empathetic responding, a.k.a. emotion causes. To gather emotion causes in
online environments, we leverage counseling strategies and develop an
empathetic chatbot to utilize the causal emotion information. On a real-world
online dataset, we verify the effectiveness of the proposed approach by
comparing our chatbot with several SOTA methods using automatic metrics,
expert-based human judgements as well as user-based online evaluation.
Related papers
- CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
Empathetic response generation endeavors to empower dialogue systems to perceive speakers' emotions and generate empathetic responses accordingly.
We propose Combining Trait and State emotions for Empathetic Response Model (CTSM)
To sufficiently perceive emotions in dialogue, we first construct and encode trait and state emotion embeddings.
We further enhance emotional perception capability through an emotion guidance module that guides emotion representation.
arXiv Detail & Related papers (2024-03-22T10:45:13Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
We propose a Serial and Emotion-Knowledge interaction (SEEK) method for empathetic dialogue generation.
We use a fine-grained encoding strategy which is more sensitive to the emotion dynamics (emotion flow) in the conversations to predict the emotion-intent characteristic of response. Besides, we design a novel framework to model the interaction between knowledge and emotion to generate more sensible response.
arXiv Detail & Related papers (2022-10-21T03:51:18Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
Empathetic conversational agents should not only understand what is being discussed, but also acknowledge the implied feelings of the conversation partner.
We propose a method based on a transformer pretrained language model (T5)
We evaluate our model on the EmpatheticDialogues dataset using both automated metrics and human evaluation.
arXiv Detail & Related papers (2021-10-30T19:04:48Z) - CEM: Commonsense-aware Empathetic Response Generation [31.956147246779423]
We propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the user's situation.
We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation.
arXiv Detail & Related papers (2021-09-13T06:55:14Z) - Affective Decoding for Empathetic Response Generation [8.391383696266704]
We propose a technique called Affective Decoding for empathetic response generation.
Our method can effectively incorporate emotion signals during each decoding step.
Our models are perceived to be more empathetic by human evaluations.
arXiv Detail & Related papers (2021-08-18T11:48:40Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure.
We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content.
arXiv Detail & Related papers (2020-10-04T00:35:47Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.