Self-Consistency of the Internal Reward Models Improves Self-Rewarding Language Models
- URL: http://arxiv.org/abs/2502.08922v1
- Date: Thu, 13 Feb 2025 03:15:31 GMT
- Title: Self-Consistency of the Internal Reward Models Improves Self-Rewarding Language Models
- Authors: Xin Zhou, Yiwen Guo, Ruotian Ma, Tao Gui, Qi Zhang, Xuanjing Huang,
- Abstract summary: We find that different internal reward models within the same Large Language Models often generate inconsistent preferences.
This inconsistency raises concerns about the reliability of self-generated preference data, hinders overall alignment performance, and highlights the need for further research.
We propose Self-Consistent Internal Rewards (SCIR), a novel framework designed to enhance consistency among internal reward models during training.
- Score: 63.116041268654705
- License:
- Abstract: Aligning Large Language Models (LLMs) with human preferences is crucial for their deployment in real-world applications. Recent advancements in Self-Rewarding Language Models suggest that an LLM can use its internal reward models (such as LLM-as-a-Judge) \cite{yuanself} to generate preference data, improving alignment performance without costly human annotation. However, we find that different internal reward models within the same LLM often generate inconsistent preferences. This inconsistency raises concerns about the reliability of self-generated preference data, hinders overall alignment performance, and highlights the need for further research to ensure reliable and coherent alignment with human preferences. To address this limitation, we propose Self-Consistent Internal Rewards (SCIR), a novel framework designed to enhance consistency among internal reward models during training. In each training step, we collect preference predictions from multiple pre-defined internal reward models and enforce consistency and confidence through an inconsistency penalty mechanism, thereby improving the reliability of these internal reward models. We selectively use data with consistent predictions for preference optimization, ensuring the quality of the preference data. By employing self-consistent internal rewards, our method significantly improves the alignment performance and reward modeling capability of LLMs, outperforming baseline methods by a notable margin.
Related papers
- Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - CREAM: Consistency Regularized Self-Rewarding Language Models [34.325289477993586]
Self-rewarding large language models (LLM) have successfully applied LLM-as-a-Judge to improve the alignment performance without the need of human annotations for preference data.
However, there is no guarantee of accuracy in the rewarding and ranking, which is critical for ensuring accurate rewards and high-quality preference data.
We propose a Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that leverages the rewarding consistency across different iterations to regularize the self-rewarding training.
arXiv Detail & Related papers (2024-10-16T16:51:01Z) - Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback [64.67540769692074]
Large language models (LLMs) fine-tuned with alignment techniques, such as reinforcement learning from human feedback, have been instrumental in developing some of the most capable AI systems to date.
We introduce an approach called Margin Matching Preference Optimization (MMPO), which incorporates relative quality margins into optimization, leading to improved LLM policies and reward models.
Experiments with both human and AI feedback data demonstrate that MMPO consistently outperforms baseline methods, often by a substantial margin, on popular benchmarks including MT-bench and RewardBench.
arXiv Detail & Related papers (2024-10-04T04:56:11Z) - Reward-Robust RLHF in LLMs [25.31456438114974]
Large Language Models (LLMs) continue to progress toward more advanced forms of intelligence.
The reliance on reward-model-based (RM-based) alignment methods introduces significant challenges.
We introduce a reward-robust RLHF framework aimed at addressing these fundamental challenges.
arXiv Detail & Related papers (2024-09-18T02:35:41Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.