Quantum Software Engineering and Potential of Quantum Computing in Software Engineering Research: A Review
- URL: http://arxiv.org/abs/2502.08925v1
- Date: Thu, 13 Feb 2025 03:22:36 GMT
- Title: Quantum Software Engineering and Potential of Quantum Computing in Software Engineering Research: A Review
- Authors: Ashis Kumar Mandal, Md Nadim, Chanchal K. Roy, Banani Roy, Kevin A. Schneider,
- Abstract summary: This paper aims to review the role of quantum computing in software engineering research and the latest developments in quantum software engineering.
We begin by introducing quantum computing, exploring its fundamental concepts, and discussing its potential applications in software engineering.
- Score: 8.626933144631955
- License:
- Abstract: Research in software engineering is essential for improving development practices, leading to reliable and secure software. Leveraging the principles of quantum physics, quantum computing has emerged as a new computational paradigm that offers significant advantages over classical computing. As quantum computing progresses rapidly, its potential applications across various fields are becoming apparent. In software engineering, many tasks involve complex computations where quantum computers can greatly speed up the development process, leading to faster and more efficient solutions. With the growing use of quantum-based applications in different fields, quantum software engineering (QSE) has emerged as a discipline focused on designing, developing, and optimizing quantum software for diverse applications. This paper aims to review the role of quantum computing in software engineering research and the latest developments in QSE. To our knowledge, this is the first comprehensive review on this topic. We begin by introducing quantum computing, exploring its fundamental concepts, and discussing its potential applications in software engineering. We also examine various QSE techniques that expedite software development. Finally, we discuss the opportunities and challenges in quantum-driven software engineering and QSE. Our study reveals that quantum machine learning (QML) and quantum optimization have substantial potential to address classical software engineering tasks, though this area is still limited. Current QSE tools and techniques lack robustness and maturity, indicating a need for more focus. One of the main challenges is that quantum computing has yet to reach its full potential.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum Software Engineering: Roadmap and Challenges Ahead [11.117076871633165]
In this work, a group of active researchers analyse in depth the current state of quantum software engineering research.
From this analysis, the key areas of quantum software engineering are identified and explored in order to determine the most relevant open challenges that should be addressed in the next years.
arXiv Detail & Related papers (2024-04-10T08:24:53Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Software Engineering Challenges from Developers' Perspective:
Mapping Research Challenges to the Proposed Workflow Model [5.287156503763459]
Software engineering of quantum programs can be approached from two directions.
In this paper, we aim at bridging the gap by starting with the quantum computing workflow and by mapping existing software engineering research to this workflow.
arXiv Detail & Related papers (2023-08-02T13:32:31Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Software Engineering: Landscapes and Horizons [1.7704011486040847]
This paper defines the term "quantum software engineering" and introduces a quantum software life cycle.
The paper also gives a generic view of quantum software engineering and discusses the quantum software engineering processes, methods, and tools.
arXiv Detail & Related papers (2020-07-14T14:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.