Self-Supervised Graph Contrastive Pretraining for Device-level Integrated Circuits
- URL: http://arxiv.org/abs/2502.08949v1
- Date: Thu, 13 Feb 2025 04:15:20 GMT
- Title: Self-Supervised Graph Contrastive Pretraining for Device-level Integrated Circuits
- Authors: Sungyoung Lee, Ziyi Wang, Seunggeun Kim, Taekyun Lee, David Z. Pan,
- Abstract summary: We introduce DICE: Device-level Integrated Circuits, the first self-supervised pretrained graph neural network (GNN) model for any circuit expressed at the device level.
DICE achieves substantial performance gains across three downstream tasks, underscoring its effectiveness for both analog and digital circuits.
- Score: 8.117059763475488
- License:
- Abstract: Self-supervised graph representation learning has driven significant advancements in domains such as social network analysis, molecular design, and electronics design automation (EDA). However, prior works in EDA have mainly focused on the representation of gate-level digital circuits, failing to capture analog and mixed-signal circuits. To address this gap, we introduce DICE: Device-level Integrated Circuits Encoder, the first self-supervised pretrained graph neural network (GNN) model for any circuit expressed at the device level. DICE is a message-passing neural network (MPNN) trained through graph contrastive learning, and its pretraining process is simulation-free, incorporating two novel data augmentation techniques. Experimental results demonstrate that DICE achieves substantial performance gains across three downstream tasks, underscoring its effectiveness for both analog and digital circuits.
Related papers
- Circuit as Set of Points [39.14967611962792]
We propose a novel perspective for circuit design by treating circuit components as point clouds.
This approach enables direct feature extraction from raw data without any preprocessing, allows for end-to-end training, and results in high performance.
arXiv Detail & Related papers (2023-10-26T14:22:43Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - Monolithic Silicon Photonic Architecture for Training Deep Neural
Networks with Direct Feedback Alignment [0.6501025489527172]
We propose on-chip training of neural networks enabled by a CMOS-compatible silicon photonic architecture.
Our scheme employs the direct feedback alignment training algorithm, which trains neural networks using error feedback rather than error backpropagation.
We experimentally demonstrate training a deep neural network with the MNIST dataset using on-chip MAC operation results.
arXiv Detail & Related papers (2021-11-12T18:31:51Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.