AnalogGenie: A Generative Engine for Automatic Discovery of Analog Circuit Topologies
- URL: http://arxiv.org/abs/2503.00205v1
- Date: Fri, 28 Feb 2025 21:41:20 GMT
- Title: AnalogGenie: A Generative Engine for Automatic Discovery of Analog Circuit Topologies
- Authors: Jian Gao, Weidong Cao, Junyi Yang, Xuan Zhang,
- Abstract summary: This paper proposes AnalogGenie as a tool for automatically design/discovery of analog circuit topologies.<n>It addresses two key gaps in the field: building a foundational comprehensive dataset of analog circuit topology and developing a scalable sequence-based graph representation universal to analog circuits.<n> Experimental results show the remarkable generation performance of AnalogGenie in broadening the variety of analog ICs, increasing the number of devices within a single design, and discovering unseen circuit topologies far beyond any prior arts.
- Score: 5.643584390992554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The massive and large-scale design of foundational semiconductor integrated circuits (ICs) is crucial to sustaining the advancement of many emerging and future technologies, such as generative AI, 5G/6G, and quantum computing. Excitingly, recent studies have shown the great capabilities of foundational models in expediting the design of digital ICs. Yet, applying generative AI techniques to accelerate the design of analog ICs remains a significant challenge due to critical domain-specific issues, such as the lack of a comprehensive dataset and effective representation methods for analog circuits. This paper proposes, $\textbf{AnalogGenie}$, a $\underline{\textbf{Gen}}$erat$\underline{\textbf{i}}$ve $\underline{\textbf{e}}$ngine for automatic design/discovery of $\underline{\textbf{Analog}}$ circuit topologies--the most challenging and creative task in the conventional manual design flow of analog ICs. AnalogGenie addresses two key gaps in the field: building a foundational comprehensive dataset of analog circuit topology and developing a scalable sequence-based graph representation universal to analog circuits. Experimental results show the remarkable generation performance of AnalogGenie in broadening the variety of analog ICs, increasing the number of devices within a single design, and discovering unseen circuit topologies far beyond any prior arts. Our work paves the way to transform the longstanding time-consuming manual design flow of analog ICs to an automatic and massive manner powered by generative AI. Our source code is available at https://github.com/xz-group/AnalogGenie.
Related papers
- Architect of the Bits World: Masked Autoregressive Modeling for Circuit Generation Guided by Truth Table [5.300504429005315]
We propose a novel approach integrating conditional generative models with differentiable architecture search (DAS) for circuit generation.
Our approach first introduces CircuitVQ, a circuit tokenizer trained based on our Circuit AutoEncoder.
We then develop CircuitAR, a masked autoregressive model leveraging CircuitVQ as the tokenizer.
arXiv Detail & Related papers (2025-02-18T11:13:03Z) - LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - AnalogCoder: Analog Circuit Design via Training-Free Code Generation [28.379045024642668]
We introduce AnalogCoder, the first training-free Large Language Models agent for designing analog circuits.
It incorporates a feedback-enhanced flow with tailored domain-specific prompts, enabling the automated and self-correcting design of analog circuits.
It has successfully designed 20 circuits, 5 more than standard GPT-4o.
arXiv Detail & Related papers (2024-05-23T17:13:52Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Image Captioning In the Transformer Age [71.06437715212911]
Image Captioning (IC) has achieved astonishing developments by incorporating various techniques into the CNN-RNN encoder-decoder architecture.
This paper analyzes the connections between IC with some popular self-supervised learning paradigms.
arXiv Detail & Related papers (2022-04-15T08:13:39Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Domain Knowledge-Based Automated Analog Circuit Design with Deep
Reinforcement Learning [6.599793419469274]
This paper presents a deep reinforcement learning method to expedite the design of analog circuits.
Experimental results show it achieves human-level design accuracy (99%) with 1.5x efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-02-26T16:56:45Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
We present an approach to recognize symbols and connections of P&ID from buildings in a completely automated way.
We apply algorithms for symbol recognition, line recognition and derivation of connections to the data sets.
The approach can be used in further processes like control generation, (distributed) model predictive control or fault detection.
arXiv Detail & Related papers (2021-08-31T15:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.