論文の概要: Medicine on the Edge: Comparative Performance Analysis of On-Device LLMs for Clinical Reasoning
- arxiv url: http://arxiv.org/abs/2502.08954v1
- Date: Thu, 13 Feb 2025 04:35:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:55.906512
- Title: Medicine on the Edge: Comparative Performance Analysis of On-Device LLMs for Clinical Reasoning
- Title(参考訳): エッジ医療 : 臨床推論のためのオンデバイスLCMの比較性能解析
- Authors: Leon Nissen, Philipp Zagar, Vishnu Ravi, Aydin Zahedivash, Lara Marie Reimer, Stephan Jonas, Oliver Aalami, Paul Schmiedmayer,
- Abstract要約: AMEGAデータセットを用いて,デバイス上で利用可能な大規模言語モデル(LLM)をベンチマークする。
以上の結果から,Phi-3 Miniのような小型汎用モデルでは,速度と精度のバランスが強いことが示唆された。
我々は、より効率的な推論と実際の臨床推論に適したモデルの必要性を強調した。
- 参考スコア(独自算出の注目度): 1.6010529993238123
- License:
- Abstract: The deployment of Large Language Models (LLM) on mobile devices offers significant potential for medical applications, enhancing privacy, security, and cost-efficiency by eliminating reliance on cloud-based services and keeping sensitive health data local. However, the performance and accuracy of on-device LLMs in real-world medical contexts remain underexplored. In this study, we benchmark publicly available on-device LLMs using the AMEGA dataset, evaluating accuracy, computational efficiency, and thermal limitation across various mobile devices. Our results indicate that compact general-purpose models like Phi-3 Mini achieve a strong balance between speed and accuracy, while medically fine-tuned models such as Med42 and Aloe attain the highest accuracy. Notably, deploying LLMs on older devices remains feasible, with memory constraints posing a greater challenge than raw processing power. Our study underscores the potential of on-device LLMs for healthcare while emphasizing the need for more efficient inference and models tailored to real-world clinical reasoning.
- Abstract(参考訳): モバイルデバイスへのLarge Language Models(LLM)のデプロイは、医療アプリケーションへの大きな可能性を提供し、クラウドベースのサービスへの依存を排除し、機密性の高い健康データをローカルに保持することによって、プライバシ、セキュリティ、コスト効率を向上させる。
しかし、実世界の医療環境におけるデバイス上でのLCMの性能と精度は未解明のままである。
本研究では、AMEGAデータセットを用いて、デバイス上で利用可能なLCMをベンチマークし、様々なモバイルデバイス上での精度、計算効率、温度制限を評価した。
以上の結果から,Phi-3 Mini などの小型汎用モデルは,Med42 や Aloe などの医療用微調整モデルの精度は高いものの,速度と精度のバランスがとれることが示唆された。
特に、古いデバイスにLLMをデプロイすることは、依然として実現可能であり、メモリ制限は、生の処理能力よりも大きな課題を呈している。
本研究は、より効率的な推論と実際の臨床推論に適したモデルの必要性を強調しつつ、デバイス上での医療用LSMの可能性を強調した。
関連論文リスト
- Efficient and Personalized Mobile Health Event Prediction via Small Language Models [14.032049217103024]
SLM(Small Language Models)は、プライバシーと計算の問題を解決するための候補である。
本稿では、ステップ、カロリー、睡眠時間、その他の重要な統計データなどの健康データを正確に分析する能力について検討する。
以上の結果から,SLMはウェアラブルやモバイルデバイス上でリアルタイムの健康モニタリングに活用できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-17T01:57:57Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
臨床能力の5つの重要な側面にまたがって,大規模言語モデル(LLM)を評価するフレームワークであるMEDICを紹介する。
医療質問応答,安全性,要約,メモ生成,その他のタスクにおいて,MDDICを用いてLCMを評価する。
その結果, モデルサイズ, ベースライン, 医療用微調整モデル間の性能差が示され, 特定のモデル強度を必要とするアプリケーションに対して, モデル選択に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2024-09-11T14:44:51Z) - MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases [81.70591346986582]
モバイル端末上でのLarge Language Models(LLM)とLarge Multimodal Models(LMM)を評価するためのベンチマークフレームワークであるMobileAIBenchを紹介する。
MobileAIBenchは、さまざまなサイズ、量子化レベル、タスクにわたるモデルを評価し、実際のデバイス上でのレイテンシとリソース消費を測定する。
論文 参考訳(メタデータ) (2024-06-12T22:58:12Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
大規模言語モデル(LLM)は、複雑な情報を処理できる汎用モデルとして登場した。
LLMが臨床医とデジタル技術との新たなインターフェースを提供する方法を示す。
自動機械学習を用いた新しい予後ツールを開発した。
論文 参考訳(メタデータ) (2023-10-05T14:18:40Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Assessing YOLACT++ for real time and robust instance segmentation of
medical instruments in endoscopic procedures [0.5735035463793008]
腹腔鏡下器具の画像ベースの追跡は、コンピュータおよびロボット支援手術において基本的な役割を果たす。
これまで、医療機器のセグメンテーションなどの既存のモデルは、ほとんどが2段階の検出器に基づいている。
楽器のリアルタイムインスタンスセグメンテーションを可能にするYOLACTアーキテクチャへの注意メカニズムの追加を提案する。
論文 参考訳(メタデータ) (2021-03-30T00:09:55Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
同変ニューラルネットワークは 深層学習コミュニティへの関心を高めています
医療分野では、データの対称性を効果的に活用して、より正確で堅牢なモデルの構築に成功している。
ディープ・ラーニング・ソリューションのモバイル・オン・デバイス実装は医療応用のために開発されている。
しかし、同変モデルは大規模で計算コストのかかるアーキテクチャを用いて一般的に実装されており、モバイルデバイス上では動作しない。
本研究では、MobileNetV2の同変バージョンを設計、テストし、さらにモデル量子化により最適化し、より効率的な推論を可能にする。
論文 参考訳(メタデータ) (2020-04-21T00:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。