One-shot Federated Learning Methods: A Practical Guide
- URL: http://arxiv.org/abs/2502.09104v1
- Date: Thu, 13 Feb 2025 09:26:44 GMT
- Title: One-shot Federated Learning Methods: A Practical Guide
- Authors: Xiang Liu, Zhenheng Tang, Xia Li, Yijun Song, Sijie Ji, Zemin Liu, Bo Han, Linshan Jiang, Jialin Li,
- Abstract summary: One-shot Federated Learning (OFL) is a distributed machine learning paradigm that constrains client-server communication to a single round.
This paper presents a systematic analysis of the challenges faced by OFL and thoroughly reviews the current methods.
- Score: 23.737787001337082
- License:
- Abstract: One-shot Federated Learning (OFL) is a distributed machine learning paradigm that constrains client-server communication to a single round, addressing privacy and communication overhead issues associated with multiple rounds of data exchange in traditional Federated Learning (FL). OFL demonstrates the practical potential for integration with future approaches that require collaborative training models, such as large language models (LLMs). However, current OFL methods face two major challenges: data heterogeneity and model heterogeneity, which result in subpar performance compared to conventional FL methods. Worse still, despite numerous studies addressing these limitations, a comprehensive summary is still lacking. To address these gaps, this paper presents a systematic analysis of the challenges faced by OFL and thoroughly reviews the current methods. We also offer an innovative categorization method and analyze the trade-offs of various techniques. Additionally, we discuss the most promising future directions and the technologies that should be integrated into the OFL field. This work aims to provide guidance and insights for future research.
Related papers
- FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences [2.519319150166215]
Federated Learning (FL) is a distributed machine learning strategy developed for settings where training data is owned by distributed devices and cannot be shared.
The application of FL to real-world settings brings additional challenges associated with heterogeneity between participants.
We propose FedPref, a first algorithm designed to facilitate personalised FL in this setting.
arXiv Detail & Related papers (2025-01-23T12:12:59Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning (VFL) is a privacy-preserving distributed learning paradigm.
Recent research has shown promising results addressing various challenges in VFL.
This survey offers a systematic overview of recent developments.
arXiv Detail & Related papers (2024-05-25T16:05:06Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - Decision-Focused Learning: Foundations, State of the Art, Benchmark and Future Opportunities [46.100825429034266]
Decision-focused learning (DFL) is an emerging paradigm that integrates machine learning (ML) and constrained optimization to enhance decision quality.
This paper provides an in-depth analysis of both gradient-based and gradient-free techniques used to combine ML and constrained optimization.
arXiv Detail & Related papers (2023-07-25T15:17:31Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
Heterogeneous Federated Learning (HFL) is much more challenging and corresponding solutions are diverse and complex.
New advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed.
Several critical and promising future research directions in HFL are discussed.
arXiv Detail & Related papers (2023-07-20T06:32:14Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Decentral and Incentivized Federated Learning Frameworks: A Systematic
Literature Review [13.544807934973168]
This is the first systematic literature review analyzing holistic FLFs in the domain of both, decentralized and incentivized federated learning.
Although having massive potential to direct the future of a more distributed and secure AI, none of the analyzed FLF is production-ready.
arXiv Detail & Related papers (2022-05-07T12:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.